Document Type

Article

Publication Date

1-2015

Abstract

The safety, efficacy, quality and stability of a formulation are the cornerstones of any new drug development process. In order to consistently maintain these attributes in a finished dosage form, it is important to have a comprehensive understanding of the physico-chemical characteristics of the active pharmaceutical ingredient (API), as well as all other components (e.g. excipients, manufacturing aids, packaging materials) of the drug product. In a new drug development process, a detailed characterization of the API and other formulation components is usually carried out during the preformulation stage. The preformulation stage involves characterization of several aspects of the API including solubility, dissolution, permeability, polymorph/salt screening, stability (solidstate and solution-state), ionization properties, particle size distribution, API-excipient compatibilities etc. [1]. Excipients are ubiquitous to virtually every pharmaceutical formulation, and facilitate the manufacture, stability, administration, delivery of the API, and/or provide other functionalities to the dosage form. Excipients are used to improve processing (e.g. improving powder flow [2, 3], powder compactibility [4-6] etc.), enhance aesthetics (e.g. identification, branding etc. [7]), optimize product performance (e.g. modified drug-release [8-11]), and/or to facilitate patient compliance (e.g. taste masking [12-15]). They may constitute anywhere from 1 to 99 % of the total formulation mass.

Due to the intimate contact of the API with one or more excipients in a formulation, there exists a likelihood of physical and/or chemical interactions between them. Any such interactions may result in a negative impact on the physical, stability or performance attributes of the drug product [16, 17]. The choice of excipients is of crucial importance to avoid these negative effects, and to facilitate the development of a robust and an effective formulation [18-20]. Thus, for a rational selection of excipients, screening of excipient-API compatibility is recognized as an important aspect of formulation development. Moreover, the USFDA’s 21st century current Good Manufacturing Practices (cGMP) initiative and International Council on Harmonization (ICH) Q8 guidelines encourage the pharmaceutical manufacturers to apply Quality by Design (QbD) principles in their drug development process [21, 22]. These guidelines include expectations of a clear understanding of any interactions between the formulation components. Moreover, recent advances in various thermal and non-thermal analytical techniques have led to an improved efficiency in the detection, monitoring and prevention of the incompatibilities early in the drug development process [23, 24].

This article aims to provide a brief overview of the nature of drug-excipient incompatibilities; as well as current trends and techniques used to evaluate these compatibilities in formulation development.

Comments

Published in the January 2015 American Association of Pharmaceutical Scientists (AAPS) Formulation Design and Development (FDD) Section Newsletter.

© 2015 The Authors.

Share

COinS