Document Type

Article

Publication Date

12-11-2016

Keywords

fsc2017

Abstract

The current work describes the formulation and evaluation of a phospholipid complex of kaempferol toenhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotectiveactivities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32) approach. The resultsinclude the validation of the mathematical model in order to ascertain the role of specific formulation andprocess variables that contribute favorably to the formulation’s development. The final product wascharacterized and confirmed by Differential Scanning Calorimetry (DSC), Fourier Transform InfraredSpectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), and Powder X-rayDiffraction (PXRD) analysis. The aqueous solubility and the in vitro dissolution rate were enhanced comparedto that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex wereevaluated by measuring its impact on carbon tetrachloride (CCl4)-intoxicated rats. The optimizedphospholipid complex improved the liver function test parameters to a significant level by restoration of allelevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidantpotential by increasing levels of GSH (reduced glutathione), SOD (superoxide dismutase), catalase anddecreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipidcomplex also demonstrated a significant improvement in oral bioavailability demonstrated by improvementsto key pharmacokinetic parameters, compared to that of pure kaempferol.

Comments

This article was published in the Journal of Excipients and Food Chemicals, and is also available through the publisher's webpage.

Additional Files

Share

COinS