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Introduction

Petrels (sub-order: Procellariiformes; family:
Procellariidae) are pelagic seabirds that forage on a range of
marine organisms including krill (Euphausia sp.), fish,
squid and a variety of crustaceans (Prince & Morgan 1987).
These birds come to land to rear offspring either above
ground or in burrows, depending on the species (for review
see Warham 1996). Petrels have large olfactory bulbs (Bang
1966, 1971, Bang & Cobb 1968) and respond to a variety of
food-related odours (Grubb 1972, Hutchison & Wenzel
1980, Lequette et al. 1989, Veit et al. 1993, Verheyden &
Jouventin 1994, Nevitt 1999, Nevitt & Veit 1999),
suggesting that many species hunt by smell. In burrowing
species, olfaction is also used to relocate the nest site
(Grubb 1973, 1974, Bonadonna & Bretagnolle 2002,
Bonadonna et al. 2003a, 2003b) and may be involved in
individual recognition (Bonadonna & Nevitt 2004, for
review see Nevitt & Bonadonna 2005).

The blue petrel (Halobaena caerulea Gmelin) has been
the subject of numerous investigations studying olfactory
behaviours in burrow nesting procellariiforms. Growing
experimental evidence suggests that adults rely on smell to
relocate their burrows when returning from foraging trips
(Bonadonna et al. 2001), probably recognizing burrow
specific olfactory signals to help them find their own
burrow amongst thousands of others at night (Bonadonna 
et al. 2004). Blue petrels are also sensitive to odours
associated with food. These include fishy smelling odours

(Nevitt et al. 2004, Nevitt & Bonadonna 2005), krill odours
(Nevitt 1994) and dimethyl sulphide (Nevitt et al. 1995), a
scented compound that is elevated where zooplankton
aggregate (reviewed by Nevitt 2000).

Although extensive research has focused on better
understanding olfactory-based behaviours in adult birds,
little is known about how these behaviours develop. To
address this, we recently investigated the responses of blue
petrel and thin-billed prion (Pachyptila belcheri
(Matthews)) chicks to a variety of odours using the Porter
method (Cunningham et al. 2003). This method involves
testing chicks’ responses to odours while they are in a
‘sleep’ state (Porter et al. 1999). Sleeping chicks responded
to odour presentations by peeping or making head
movements; these behaviours were easily scored. Using this
non-invasive technique, we found that even young chicks
(aged four to 17 days) were able to detect both a food-
related and a novel odour, indicating that the olfactory
system is well developed in some procellariiforms prior to
leaving the burrow (Cunningham et al. 2003, see also
Minguez 1997, Bonadonna et al. 2006). Having established
that chicks can smell, we wanted to explore whether food-
related odours might elicit exploratory behaviours in awake
chicks once they become ambulatory.

Here we tested the responses of blue petrel chicks to
odours using a simple wind tunnel delivery system where
we could record detailed behavioural responses to a
standardized odour presentation. Chicks were exposed to
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Abstract: As a first step towards understanding the development of olfactory behaviours in Antarctic
procellariiform seabirds, we recently showed that blue petrel chicks (Halobaena caerulea) could detect both
a food-related and a novel odour while asleep. In this current study, we tested chicks in a simple wind tunnel
to determine if exploratory behaviours could be initiated by olfactory stimuli as well. We compared the
behavioural responses of 30 blue petrel chicks to cod liver oil (a prey-related odour) or phenyl ethyl alcohol
(an unfamiliar, rosy-smelling odourant) against a control (distilled water). Six behavioural indices were
measured, including head turns, body turns, bites, preening events, wing-stretches, and distance walked. In
response to cod liver oil, we found that chicks increased both turning rates and distances walked whereas
chicks preened more in response to phenyl ethyl alcohol. Since only cod liver oil initiated behaviours
consistent with searching, our results suggest that chicks are attaching biological significance to food-related
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either cod liver oil (CLO), a known fishy-smelling olfactory
attractant for procellariiforms (Grubb 1972, Hutchison &
Wenzel 1980, Lequette et al. 1989, Verheyden & Jouventin
1994, Nevitt & Haberman 2003, Nevitt et al. 2004), or
phenyl ethyl alcohol (PEA), a rosy smelling novel odourant
that blue petrels can detect (Cunningham et al. 2003). We
predicted that these two odours would elicit different
behaviours in chicks because CLO is a food-related odour
whereas PEA is not.

Material and methods

Blue petrel chicks on Mayes Island (49°28'S, 69°57'E) in
the Gulf of Morbihan, Iles Kerguelen, were tested in late
January 2002 (21–24 January for the CLO experiment and
26–29 January for the PEA experiment). Experiments were
conducted sequentially using different birds for each
experiment. The mean age of the chicks at testing 
(± s.e.(m.)) was 32 ± 0.9 days for birds used in the CLO
experiment and 36 ± 1.6 days for birds used in the PEA
experiment. Hatch dates were determined by checking
burrows on a daily basis around the time of hatching. All
trials were conducted between 10:00 and 15:00 hours to
minimize diel variation. Chicks were tested under ambient
conditions. The mean air temperature was 17.2 ± 0.5°C and
the mean relative humidity was 56.6 ± 0.7% during the two
experiments.

Wind tunnel specifications

All experiments were performed in a simple wind tunnel
(Fig. 1) situated inside a well-ventilated shelter (1.5 m x 
1.5 m; 2.5 m high) located less than 500 m from a blue
petrel colony. The arena where the chick was placed (0.8 m
x 0.6 m; 0.3 m high) was constructed of Plexiglass®.
Airflow (0.6–0.7 m sec-1) was generated by a pressure box

with two tubeaxial fans mounted to each side (Mechatronics
model UF12A12; Preston, WA, USA; air volume: 3 m3 min-

1). The fans were positioned at a 90° angle to an exit port
that directed air into the testing arena. Two lengths of
flexible air duct (9 cm diameter) were attached to the fans
and ran through vents in the hut wall to draw fresh air from
outside. To reduce turbulence in the arena, air exiting the
pressure box passed through egg-crate plastic lined with
organdie fabric.

Olfactory stimuli

A glass dish (diameter 71 mm; height 41 mm) containing a
cotton swab (1 cm x 5 cm; 0.5 cm thick) was positioned 
10 cm downwind from the pressure box exit port. The
cotton swab was saturated with a 1 mL solution of either
100% CLO (Squibb Pharmaceuticals, New York, NY,
USA), 1 μM PEA (Sigma-Aldrich, St Louis, MO, USA), or
a distilled water control. Odour or control presentations
were presented sequentially and in random order according
to the design shown in Table I. To control for potential order
effects, half of the chicks in each group received the control
stimulus first, and half received the experimental odour
(CLO or PEA) first. Thirty chicks were tested for each
experiment (60 chicks total). Three chicks were removed
from the experiment because they either quickly walked out
of the arena or showed stereotypies that suggested excessive
stress. These chicks were immediately returned to their
burrows and were not included in the analyses.

Experimental protocol

Chicks were tested one at a time. Prior to a trial, a chick was
removed from its burrow and transported to the shelter in a
cotton bag. Because chicks live in dark, underground
burrows, experiments were performed in the dark and
videotaped from above using infrared illumination. To start
a trial, a chick was positioned inside the arena at a
predefined ‘start’ point located 40 cm downwind of the
glass dish (Fig. 1) which contained either an odour or a
control stimulus. Chicks were positioned such that their
beak faced upwind. Following a 1 min acclimation period,
we removed the lid from the glass dish and recorded the
chick’s behaviours for 4 min using a Sony camcorder
(model DCR-TRV30) outfitted with an external infrared
light emitter (Sony model HVL 1RH2). At the end of 4 min,
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Fig. 1. Schematic of the wind tunnel. Fresh air entered from
outside the hut into the pressure box (grey box) via two
tubeaxial fans. Air then passed through ‘straighteners’ and
entered the arena. The testing arena, containing the chick, was
filled with the odour.

Table I. Design of the experiment. Each blue petrel chick was exposed to
the stimulus in Trial One, followed by the stimulus in Trial Two.

Trial One Trial Two

Cod Liver Oil (CLO) Group One CLO CONTROL
Group Two CONTROL CLO

Phenyl Ethyl Alcohol (PEA) Group One PEA CONTROL
Group Two CONTROL PEA

http://journals.cambridge.org
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the chick was repositioned at the ‘start’ point, and another
lidded glass dish containing the second stimulus was
swapped into the testing arena. This second stimulus was
then tested using the same procedure. Between trials, all
chicks were handled similarly whether or not they walked
during Trial One. Once Trial Two was completed, chicks
were weighed, measured for wing length, tarsus length, and
bill length, and returned to their burrow. These
morphometric data are summarized in Table II.

A ‘blind’ observer scored videotapes in real time on a
Sony Trinitron colour video monitor (model PVM-1351Q)
using Jwatcher software (Blumstein, Evans & Daniel,
Animal Behaviour Laboratory, Macquarie University,
Australia). We identified five behaviours (see Table III):
head turns, body turns, bites, preening events and wing-
stretches. Body position, used to calculate the total distance
that each chick walked, was noted at 15 sec intervals.

Statistical analysis

We first examined whether the order of stimulus
presentation influenced responsiveness by comparing the
mean response to a stimulus obtained during Trial One
against the mean response to the same stimulus obtained in
Trial Two (see Table I). We used either a Student’s t-test on
normal or square root transformed data, or a Mann-Whitney
U test on non-normal data (Zar 1996). Mean responses to
PEA and both control presentations were significantly
different between trials, but the responses to CLO were not,
indicating that the order of stimulus presentation influenced
the behavioural response for some stimuli (see Results).
Due to this order effect, we elected not to pool the results of
the two trials for each stimulus (Leger & Didrichsons 1994)
and carried out further analysis on each of the trials
separately.

For each trial, we compared the average number of head
turns, body turns, bites, preening events and wing-stretches
elicited, as well as the average distance walked, in response
to the odour and the control stimulus using similar tests as
above. When comparing differences between body turns, or
distances walked, we limited our analysis only to the subset
of chicks that walked. To investigate turning behaviour,
one-tailed tests were used since we expected an increase in
the number of turns in response to odour stimuli (Nevitt 
et al. 1995, Veit & Prince 1997, Munyaneza & Obrycki
1998, Veit 1999, Drost et al. 2000, Vernes & Haydon 2001).

Results
The order effect

Responses to CLO-presentations were similar between
trials. However, chicks were more active in Trial One

OLFACTORY BEHAVIOUR OF BLUE PETREL CHICKS 347

Table II. Morphometric data collected from blue petrel chicks from both
experiments (mean ± s.e.(m.)). Chicks used in the PEA experiment had
significantly larger wing chords and tarsus and bill lengths than chicks
used in the CLO experiment (Student’s t-test, P < 0.05*). Chicks for the
two experiments had similar weights (Student’s t-test, P > 0.10).

Weight Wing Tarsus Bill
chord* length* length*

(g) (mm) (mm) (mm)

CLO Experiment, n = 30 156.3 ± 4.5 111.1 ± 4.1 31.9 ± 0.3 23.2 ± 0.3
PEA Experiment, n = 30 167.9 ± 5.5 135.7 ± 3.5 32.9 ± 0.2 24.2 ± 0.4

Table III. Description of behaviours counted in the video analysis.

Behaviour Explanation of behaviour

Head turns Sweep of the head 45o to the right or the left
Body turns Turning of the body 45o to the right or the left
Bites A quick open and closing of the beak
Preening Rubbing the beak or head over the feathers
Wing-stretches Extension of the wing
Distance Total distance walked by chick in four min

Fig. 2. Behavioural responses of blue petrel chicks to CLO and
control presentations during a. Trial One, and b. Trial Two.
Responses are indicated as black (CLO) or white (control) bars.
Values are given as Mean ± s.e.(m). A significant difference was
observed for only one behaviour (body turning) during Trial
Two, and is indicated by an asterisk (Student’s t-test, P < 0.05*).
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compared to Trial Two for all other stimulus presentations
(PEA, both control presentations). These findings are
summarized in Table IV. Since we found a significant order
effect with respect to CLO-control, PEA, and PEA-control
presentations, we analysed the results of Trials One and
Two separately for each of the experiments.

Behavioural responses to CLO in Trial One and Trial Two

In Trial One, all behavioural scores were similar in response
to CLO and control stimulus presentations (Fig. 2a:
Student’s t-test: head turns: n = 28, t = -0.907, df = 26, P =
0.372; body turns: n = 14, t = 0.7, df = 12, P = 0.25; Mann-
Whitney U test: bites: n = 28, U = -0.98, P = 0.32; preening:
n = 28, U = 0.36, P = 0.72; wing-stretches: n = 28, U = 
-0.48, P = 0.63). In addition, about half of the chicks walked
(6/14 for CLO and 8/14 for control) but distances travelled
were similar between treatments (Fig. 3a: n = 14, t = 0.45,
df = 12, P = 0.66).

A lower proportion of the chicks walked in Trial Two

compared to Trial One (5/15 for both CLO and control).
Chicks turned more (Fig. 2b) and walked further distances
(Fig. 3b) in response to CLO, but the other scores were
similar between the two stimuli (body turns: n = 10, t = 
-2.91, df = 8, P = 0.01; distance: n = 10, t = -2.31, df = 8, P =
0.05; head turns: n = 30, t = 0.84, df = 28, P = 0.41; bites: n
= 30, U = -0.66, P = 0.51; preening: n = 30, U = 0.39, P =
0.70; wing-stretches: n = 30, U = -0.48, P = 0.63).

Behavioural responses to PEA in Trial One and Trial Two

In Trial One, chicks preened more in response to PEA than
to control, but other behaviours were similar (Fig. 4a:
preening: n = 29, U = 2.69, P = 0.0071; head turns: n = 29, 
t = 0.71, df = 27, P = 0.48; body turns: n = 18, t = -1.37, df =
16, P = 0.09; bites: n = 29, t = 0.27, df = 27, P = 0.79; wing-
stretches: n = 29, U = 1.14, P = 0.26). Most chicks tended to

348 GREGORY B. CUNNINGHAM et al.

Fig. 3. Mean distances walked by blue petrel chicks in response to
CLO and control presentations during a. Trial One, and b. Trial
Two. Responses are indicated as black (CLO) or white (control)
bars. Values are given as mean ± s.e.(m). Differences between
treatments were significant during Trial Two only (Student’s 
t-test, P = 0.05*).

Fig. 4. Behavioural responses of blue petrel chicks to PEA and
control presentations during a. Trial One, and b. Trial Two.
Responses are indicated as black (PEA) or white (control) bars.
Values are given as mean ± s.e.(m). A significant difference was
observed for only one behaviour (preening) during Trial One,
and is indicated by a double asterisk (Student’s t-test, P <
0.01**).
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walk in Trial One (9/15 for PEA and 9/14 for control) but
distances walked were similar between treatments (Fig. 5a:
n = 18, t = 1.20, df = 16, P = 0.25).

During Trial Two, chicks reacted similarly to PEA and
control stimuli (Fig. 4b: head turns: n = 29, t = 0.76, df = 28,
P = 0.45; body turns: n = 10, t = -0.13, df = 8, P = 0.45;
bites: n = 29, U = 0.16, P = 0.88; preening: n = 29, U = 
-1.23, P = 0.22; wing-stretches: n = 29, U = 0.45, P = 0.65).
In contrast to Trial One, fewer chicks walked (6/14 for PEA
and 4/15 for control) but distances walked were similar
(Fig. 5b: n = 10, t = -0.74, df = 8, P = 0.48).

Discussion

This study is the first to use a simple wind tunnel to explore
olfactory behaviours in procellariiform chicks. By
videotaping blue petrel chicks in the wind tunnel, we were
successfully able to record and measure a suite of distinct
behaviours that are likely to be involved with olfactory
search. We found that these birds responded differently to

odour and to control presentations depending on both the
identity of the odour and how long chicks had been in the
wind tunnel. These differences give us insight into how
different types of odour stimuli may influence behaviours.
For example, in response to CLO, chicks walked further
distances and turned more, but only during Trial Two. In
petrels, turning behaviour is linked to olfactory search both
at sea (e.g. Hutchison & Wenzel 1980, Nevitt et al. 1995)
and on land (Grubb 1972), and characterizes olfactory
search in a variety of other animals (Willis & Arbas 1998,
Leising & Franks 2002, Weissburg & Dusenbery 2002). Our
results suggest that blue petrel chicks probably needed time
to adjust to the testing conditions before initiating search
behaviour in response to CLO. By contrast, chicks did not
perform search behaviours in response to PEA, but did
preen more in the presence of this stimulus during Trial
One. Preening has been linked to stress in a variety of birds
(Nephew et al. 2001, Olsson et al. 2002, Zimmerman et al.
2003, Meteyer et al. 2004) and is clearly not a behaviour
involved with olfactory search. Our interpretation is that
this preening response was associated with the stress of
being placed in an arena that smelled unfamiliar.

Potential explanations for the differences in response to
stimuli

We see a number of reasons why CLO initiated behaviours
consistent with olfactory search whereas PEA did not. First,
blue petrel chicks may recognize CLO as a food-related
odour and associate it with parental feeding. On Mayes
Island, 56.8% of the diet of breeding blue petrels consists of
fish (Cherel et al. 2002), suggesting that chicks are exposed
to fishy smelling compounds in the regurgitated stomach oil
that they are fed. While the composition of scented
compounds in various types of petrel regurgitants is not yet
known, stomach oil contains squalene, which is also a fishy
smelling component of commercially available cod liver oil
(Clarke & Prince 1976). It is therefore likely that the chicks
we tested had prior experience with at least one of the fishy
smelling components of cod liver oil. This explanation
suggests that chicks have already attached a biological
significance to food-related odours even before they forage
for the first time.
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Fig. 5. Mean distances walked by blue petrel chicks in response to
PEA and control presentations during a. Trial One, and b. Trial
Two. Responses are indicated as black (PEA) or white (control)
bars. Values are given as Mean ± s.e.(m). For both trials, chicks
walked the same distance in response to the two stimuli (see
text).

Table IV. Chicks tended to be more active in Trial One compared to Trial
Two for both control presentations and for PEA. Only behaviours that had
significant differences between Trial One and Trial Two are shown here.

Stimulus Behaviour Trend Statistics

CLO - Control Head turns Trial 1 > Trial 2 t = 2.96, df = 27, P = 0.006
Distance walked Trial 1 > Trial 2 t = 2.18, df = 11, P = 0.05

PEA Biting Trial 1 > Trial 2 U = 2.00, P = 0.05
Preening Trial 1 > Trial 2 U = 3.16, P = 0.002

PEA - Control Head turns Trial 1 > Trial 2 t = 1.83, df = 28, P = 0.08
Biting Trial 1 > Trial 2 U = 1.69, P = 0.09

http://journals.cambridge.org
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Alternatively, blue petrel chicks might have shown an
increased turning response to CLO because they were
reacting to it as a novel odour. This interpretation is
supported by studies that have shown that other petrels
(Antarctic prion, Pachyptila desolata Gmelin, Bonadonna
& Nevitt 2004) and other animals can be attracted to
‘strange’ odours (reviewed by Jordan & Bruford 1998,
Bernatchez & Landry 2003). These studies examined
responses to individual-specific odours which were not food
related, however. Given that both CLO and the regurgitants
that chicks are fed contain fishy smelling compounds, the
circumstances of our experiment do not support the
hypothesis that chicks were responding to an unfamiliar
odour. Moreover, of the two scents we tested, PEA is most
likely to be unfamiliar to petrels because it is a rosy scent
that is not found in the sub-Antarctic environment. Thus, if
birds were responding to odours because they were
unfamiliar, we would have expected the greater response to
be to PEA, which we did not observe.

Lastly, chicks might have responded differently to CLO
and PEA because, for technical reasons, the CLO group was
tested at a slightly younger age (by four days) than the PEA
group. Given that the chick rearing period is ~45 days
(Jouventin et al. 1985), this difference is small, but
significant (Student’s t-test: t = -2.31, df = 15, P = 0.04).
However, since young chicks tend to be much less
ambulatory than older chicks, we would have predicted that
the CLO group would be less likely to show a response to an
odourant. Yet these younger chicks turned more and walked
further distances in response to CLO than their older
counterparts did to PEA. Thus, our interpretation is that age
did not contribute to the differences we saw in chicks’
responses to CLO and PEA. Alternatively, older chicks
might have been more easily stressed than younger chicks,
and this may partially contribute to the increase in preening
we observed in response to PEA, but we have no published
or anecdotal information to support this hypothesis.

The simple wind tunnel as a testing tool

In addition to providing insight into chick behaviours, this
study explores the use of a simple wind tunnel as a new
method for testing olfactory behaviours in the field. Using
this technique, we were able to easily observe and quantify
detailed behavioural responses to odour stimuli in freely
moving animals, despite working under primitive field
conditions. So far, such detailed observations have not been
possible using alternate techniques such as Y-mazes where
movements and fine scale behaviours of the subjects are
hidden from the observer (see Grubb 1974, Brooke 1989,
Minguez 1997, Hagelin et al. 2003, Bonadonna & Nevitt
2004, Bonadonna et al. 2004, 2006). While Y-maze testing
can be used successfully to examine attraction to odours in
older blue petrel chicks that are closer to fledging, we have
found that it does not work well with younger chicks that

have limited mobility (Nevitt, personal observation). An
alternative method, the Porter method, is an easy means to
assess odour detection against an unscented control, but this
technique cannot be used as a discrimination tool between
two scented compounds (Cunningham et al. 2003). This
method also tends to fail as chicks become older because
they do not stay asleep long enough to complete trials
(Cunningham, personal observation). 

While testing chicks in the wind tunnel offers the
possibility for detailed observation and quantification of
behavioural responses to odours, the methodology we used
carried some restrictions. For example, our experimental
design required that behaviours were scored blind to the
testing conditions. In our case, this required videotaping
trials that could only be properly analysed once we had
returned from the field. After following this procedure, we
uncovered an order effect that was not at all obvious at the
time of the experimental trials. For the present experiment,
this order effect gave us critical insight into the nature of the
behavioural responses we observed. However, this
unexpected result also suggested that blue petrel chicks
might need additional acclimation time if behavioural
responses to novel odours are being tested. In such cases, a
better design might be to increase the acclimation period
and then test chicks against a single stimulus (odour or
control), rather than against sequential stimuli. This change
in design, however, would double the number of individuals
needed and has to be balanced against increased disturbance
to the colony (for example, see Blackmer et al. 2004). In
addition, other petrel species may respond differently than
blue petrels did to this testing situation.

Summary and conclusions

In summary, we have shown that blue petrel chicks appear
to be specifically responsive to food-related odours such as
CLO, since only this odour initiated behaviours consistent
with olfactory search. Furthermore, we have demonstrated
that a simple wind tunnel can be successfully used in the
field to test the responses of blue petrel chicks to a variety of
olfactory stimuli. The emerging picture from our work
suggests that chicks may be learning about odour cues that
they will use while foraging as adults. Future studies will
continue to investigate these ideas in greater detail (e.g.
Bonadonna et al. 2006, Nevitt et al. 2006).
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