Formulation and Characterization of the Improved Solubility, In Vivo Bioavailability and Antioxidant Activity of Apigenin-Phospholipid Complex (APLC)

Sridhar Anand
St. John Fisher College, sanand@sjfc.edu

Darshan R. Telange
R.T.M. Nagpur University

Arun T. Patil
R.T.M. Nagpur University

Anil M. Pethe
R.T.M. Nagpur University

Harshal Fegade
R.T.M. Nagpur University

See next page for additional authors

Publication Information
https://fisherpub.sjfc.edu/pharmacy_facpub/417
Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.
Formulation and Characterization of the Improved Solubility, In Vivo Bioavailability and Antioxidant Activity of Apigenin-Phospholipid Complex (APLC)

Abstract
In the present study a phospholipid based complex of apigenin (APLC) was prepared with a goal of improving its aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity.

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments

Authors
Sridhar Anand, Darshan R. Telange, Arun T. Patil, Anil M. Pethe, Harshal Fegade, and Vivek S. Dave

This poster presentation is available at Fisher Digital Publications: https://fisherpub.sjfc.edu/pharmacy_facpub/417
Formulation and Characterization of the Improved Solubility, In Vivo Bioavailability and Antioxidant Activity of Apigenin-Phospholipid Complex (APLC)

S. Anand¹, D. Telange², A. T. Patil², A. Pethe², H. Fegade², V. S. Dave¹
¹St. John Fisher College, Wegmans School of Pharmacy, Rochester, NY
²R.T.M. Nagpur University, Nagpur, India

Purpose:
In the present study a phospholipid based complex of apigenin (APLC) was prepared with a goal of improving its aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity.

Methods:

Formulation
- Apigenin : Phospholipid complex

Full Factorial Design (3²)
- Design variables
 - Apigenin : Phospholipid ratio
 - Reaction temperature
 - Extent of complex formation (% Yield)

Physical-chemical characterization
- Particle size analysis and zeta potential
- Thermal analysis (DSC)
- Fourier transform infrared spectroscopy (FTIR)
- Proton nuclear magnetic resonance (¹H-NMR)
- Powder x-ray diffractometry (PXRD)
- Solubility analysis

Functional characterization
- In vitro dissolution
- In vivo antioxidant activity
- Pharmacokinetic analysis

Results:

Table 1. Solubility analysis of pure apigenin, the physical mixture (1:1) of apigenin and Phospholipon® 90H (PM), and apigenin- Phospholipon® 90H complex (APLC).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Aqueous solubility (µg/mL)*</th>
<th>n-octanol solubility (µg/mL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apigenin</td>
<td>0.62 ± 0.88</td>
<td>603.02 ± 0.72</td>
</tr>
<tr>
<td>PM</td>
<td>6.13 ± 1.13</td>
<td>634.77 ± 1.25</td>
</tr>
<tr>
<td>APLC</td>
<td>22.80 ± 1.40</td>
<td>680.24 ± 1.21</td>
</tr>
</tbody>
</table>

*Data expressed as mean ± Std. Dev.; n = 3

Figure 1. The response surface plot and contour plots of entrapment efficiency (Y, %) as a function of the ratio of apigenin and Phospholipon® 90H (X₁, w:w), and the reaction temperature (X₂, °C).

Figure 2. The in-vitro dissolution profiles of apigenin release from apigenin suspension, and APLC. Values are mean ± Std. Dev. (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 (significant with respect to pure apigenin).

Figure 3. Influence of pure apigenin and APLC on rat liver antioxidant marker enzymes, i.e. glutathione reductase (GSH) (nmoles/mg of protein), superoxide dismutase (SOD) (units/mg protein), catalase (CAT) (units/mg protein), and lipid peroxidase (LPO) (nmoles of MDA released /g tissue). Values are Mean ± Std. Error of Mean (n = 6). *p < 0.05, **p < 0.01 (significant with respect to control: CCl₄-only treated groups).

Figure 4. Mean plasma concentration-time profile after oral administration of pure apigenin (100 mg/kg, p.o.) or APLC (~100 mg/kg apigenin, p.o.). Values are mean ± Std. Dev. (n = 6). *p < 0.05; **p < 0.01; ***p < 0.001 (significant wrt pure apigenin treated group).

Conclusions:
- The prepared APLC demonstrated superior aqueous solubility, bioavailability, and antioxidant properties when compared to apigenin alone.
- A promising strategy for improved delivery of drugs with poor aqueous solubility.