Ciprofloxacin for the treatment of Cardiobacterium hominis prosthetic valve endocarditis

Lisa M. Avery
St. John Fisher College, lavery@sjfc.edu

Catherine B. Felberbaum
.Unity Hospital

Muhammad Hasan
St. Joseph's Health

How has open access to Fisher Digital Publications benefited you?

Follow this and additional works at: _https://fisherpub.sjfc.edu/pharmacy_facpub_

Part of the Pharmacy and Pharmaceutical Sciences Commons

Publication Information

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit _http://libguides.sjfc.edu/citations_.

This document is posted at _https://fisherpub.sjfc.edu/pharmacy_facpub/161_ and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact _fisherpub@sjfc.edu_.

Ciprofloxacin for the treatment of Cardiobacterium hominis prosthetic valve endocarditis

Abstract
Prosthetic valve endocarditis due to *Cardiobacterium hominis* is rare and recommended therapy includes a third generation cephalosporin. We report a case of *Cardiobacterium hominis* endocarditis post transcatheter aortic valve replacement in a patient with significant beta-lactam antimicrobial sensitivities who was successfully treated with ciprofloxacin monotherapy in conjunction with surgery.

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments
This open access article is also available through the publisher: https://doi.org/10.1016/j.idcr.2018.01.016

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Case report

Ciprofloxacin for the treatment of Cardiobacterium hominis prosthetic valve endocarditis

Lisa M. Avery, Catherine B. Felberbaum, Muhammad Hasan

ABSTRACT

Prosthetic valve endocarditis due to Cardiobacterium hominis is rare and recommended therapy includes a third generation cephalosporin. We report a case of Cardiobacterium hominis endocarditis post transcatheter aortic valve replacement in a patient with significant beta-lactam antimicrobial sensitivities who was successfully treated with ciprofloxacin monotherapy in conjunction with surgery.

Case report

A 78-year-old man was referred to the hospital by his primary care physician for intravenous antibacterial therapy after 2 sets of blood cultures grew Cardiobacterium hominis. One week earlier he had been hospitalized for exertional chest tightness radiating into his jaw, bilateral peripheral edema, and severe anemia due to lower gastrointestinal blood loss. Troponin was mildly elevated at 0.2 ng/mL, BNP was 671 pg/mL and electrocardiogram showed sinus rhythm with nonspecific repolarization changes. His hemoglobin was 6.7 g/dL and he received 2 units of packed cells. During the transfusion he developed a fever of 38.9 °C, so 2 sets of peripheral blood cultures were drawn. He had no additional fevers, received no antimicrobials during that hospital stay, and was discharged. Both blood culture sets grew Cardiobacterium hominis, so the patient was asked to return to the hospital.

On readmission he reported a history of intermittent low grade fevers, chills, increasing fatigue, worsening anemia, and bilateral leg swelling unresponsive to diuretics over the last 4 months. He had a fever of 38.9 °C, so 2 sets of peripheral blood cultures were drawn. He received 2 units of packed cells. During the transfusion he developed a systolic murmur was noted with no peripheral signs of endocarditis. The white blood cell count was 9.4 × 10³/uL, hemoglobin: 8.6 g/dL, and platelets were 210 × 10³/uL. The sedimentation rate was 75 mm/h, and C-reactive protein of 11.4 mg/dL. The blood urea nitrogen (BUN) was elevated at 37 mg/dL with a serum creatinine of 1.25 mg/dL. A transesophageal echocardiogram (TEE) revealed a small vegetation or mass on the aortic valve with a mild to moderate perivalvular leak and no abscess.

The blood cultures were negative 4 days after the initiation of ciprofloxacin monotherapy with surgery. Minimum inhibitory concentration for the following antimicrobials was reported: ampicillin: 0.25 ug/mL (beta-lactamase negative), ceftriaxone: 1 ug/mL, ciprofloxacin: ≤0.12 ug/mL, levofloxacin: ≤0.06 ug/mL, meropenem: 0.12 ug/mL, trimethoprim-sulfamethoxazole: 0.5/9.5 ug/mL. Repeat blood cultures were negative 4 days after the initiation of ciprofloxacin therapy.

On day 6 of hospitalization, the patient experienced chest pressure radiating into his jaw. This occurred 3 days after clopidogrel and aspirin had been held for esophagogastroduodenoscopy and colonoscopy to work up gastrointestinal bleeding. Troponin was 0.08 ng/mL and...
electron microscopy (MALDI-TOF) technology that augments a laboratory advent of matrix assisted laser desorption ionization-time of flight mass spectrometry. There are only six published case reports of ciprofloxacin therapy that utilize ciprofloxacin to detect this pathogen. On post-operative day 7 the patient developed a mediastinal and left chest hematoma that led to cardiogenic shock and he was transferred to the intensive care unit. He returned to the operating room for post-operative bleeding where 2 liters of blood were removed from the right chest. He remained in the intensive care unit for 8 days. On post-operative day 15, the antibacterial was converted to oral ciprofloxacin 500 mg twice daily. This was administered for an additional 4 weeks, resulting in a total of a 6.5 weeks (6 weeks post-surgery) of treatment. He received no other antimicrobials during hospitalization with the exception of vancomycin for surgical prophylaxis. After a 2.5 week hospital stay he was discharged to a rehabilitation center. Fourteen months later, the patient is home, clinically stable with no signs of recurrence. He did not experience any adverse events associated with ciprofloxacin therapy. Levofloxacin was recommended for dental prophylaxis.

Discussion

Cardiobacterium hominis is a gram negative coccobacillus and a member of the HACEK (Haemophilus species, Aggregatibacter species, Cardiobacterium hominis, Eikenella corrodens and Kingella species) group of bacteria known for their slow growing nature and insidious onset. HACEK organisms are the causative pathogens in < 10% of cases of community acquired infective endocarditis, excluding infections in intravenous drug users. This percentage may increase with the advent of matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) technology that augments a laboratory’s ability to detect this pathogen.

The American Heart Association/Infectious Disease Society of America endocarditis guidelines recommend ceftriaxone or another third or fourth-generation cephalosporin for treatment of HACEK endocarditis. Patients with endocarditis who are unable to tolerate first line therapy can be treated with a fluoroquinolone (ciprofloxacin, levofloxacin, or moxifloxacin) for 6 weeks based on limited evidence. There are only six published case reports of Cardiobacterium hominis that utilize ciprofloxacin as part of combination therapy or as salvage therapy. Clinical cure was achieved in 5 of the 6 patients with surgical intervention in 3 patients. In 4 cases, ciprofloxacin was combined with either rifampin, ceftriaxone, ceftriaxone and gentamicin, or penicillin, gentamicin, and imipenem cilastatin. Our case report is unique in that ciprofloxacin monotherapy was used for the entire course of therapy, including step-down to oral ciprofloxacin to complete 6 weeks of treatment avoiding the long term use of a peripherally inserted central line.

Susceptibility testing for Cardiobacterium hominis is not readily available at most institutions. In our case the organism was sent to a reference laboratory and was found to be sensitive to all antimicrobials tested including ciprofloxacin with an MIC of ≤0.12 μg/mL. This is well below the Clinical and Laboratory Standards Institute (CLSI) breakpoint of ≤1 μg/mL. It is also in the range of MIC values 0.012–0.5 μg/mL reported in the literature. In the case report by Vogt et al., the authors performed a killing curve assay using the patient’s serum after receiving ciprofloxacin 200 mg combined with 5 × 10^5 cfu/mL of organisms. With ciprofloxacin peak and trough concentrations of 0.74 μg/mL and 0.14 μg/mL bacterial counts were undetectable within 2 and 4 h respectively.

Cardiobacterium hominis has a strong association with aortic valve infection and is known to produce large friable vegetations. Surgical intervention is required in 30–50% of patients. Peripheral and central nervous system emboli are reported in 51 and 21% of cases respectively. Our patient did not have any evidence of peripheral or central nervous system emboli. Acute coronary syndrome is a rare manifestation of endocarditis, but has been reported with other HACEK organisms, including two cases with Cardiobacterium hominis. In a case series of patients with endocarditis that presented with acute coronary syndrome, Courand et al. recommended consideration of septic coronary embolism in patients with acute coronary syndrome, elevation of inflammatory biomarkers, a normal coronary artery, and unusual regurgitant valvulopathy. Interestingly in our case the patient presented with acute coronary syndrome that may have been related to septic emboli, although he had an extensive cardiac history.

HACEK endocarditis is associated with a 93% cure rate and 4% rate of hospital mortality. Our patient responded well to a 6 week course of ciprofloxacin therapy given first intravenously and then by mouth, in combination with surgical intervention. He also did not experience any adverse reactions that can be associated with long term fluoroquinolone therapy such as QTc prolongation, peripheral neuropathy, or tendon rupture.

Conclusion

Monotherapy with intravenous ciprofloxacin followed by oral step down therapy for 6 weeks combined with valve replacement was successful in the treatment of prosthetic aortic valve endocarditis with...
<table>
<thead>
<tr>
<th>Age/Gender</th>
<th>Type of Valve</th>
<th>Treatment regimen (reason for ciprofloxacin treatment)</th>
<th>Ciprofloxacin MIC (ug/mL)</th>
<th>Duration of Total Therapy, weeks (Duration of Ciprofloxacin Therapy, weeks)</th>
<th>Surgery Outcome (follow up in months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78/M</td>
<td>Aortic</td>
<td>SAPIEN ciprofloxacin 400 mg IV twice daily to 500 mg PO twice daily (Penicillin and ≤0.12 cephalosporin allergy)</td>
<td>0.06</td>
<td>6.5 (5)</td>
<td>Cured (14)</td>
</tr>
<tr>
<td>43/NS [5]</td>
<td>NS</td>
<td>NS</td>
<td>0.012</td>
<td>6 NS (15)</td>
<td>NS</td>
</tr>
<tr>
<td>61/M [9]</td>
<td>Homograft</td>
<td>ceftriaxone 2 g IV daily for 3 weeks, then ciprofloxacin 750 mg PO twice daily (Ceftriaxone-induced agranulocytosis)</td>
<td>0.5</td>
<td>24 (21)</td>
<td>NS</td>
</tr>
<tr>
<td>66/F [7]</td>
<td>Native</td>
<td>ceftriaxone 2 g IV twice daily, gentamicin 7 mg/kg/day, ciprofloxacin 400 mg IV twice</td>
<td>0.5</td>
<td>27 (27)</td>
<td>Cured (NS)</td>
</tr>
<tr>
<td>75/M [5]</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>20 days (20 days)</td>
<td>Died</td>
</tr>
<tr>
<td>63/M [4]</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>6 NS (1)</td>
<td>Cured (8)</td>
</tr>
<tr>
<td>63/F [4]</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>4 NS (3)</td>
<td>Cured (NS)</td>
</tr>
<tr>
<td>66/F [8]</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>36 NS (36)</td>
<td>Cured (NS)</td>
</tr>
<tr>
<td>79/M</td>
<td>Aortic</td>
<td>Ciprofloxacin PO (combination therapy)</td>
<td>NS</td>
<td>63 NS (63)</td>
<td>Cured (NS)</td>
</tr>
</tbody>
</table>

NS: Not stated

IV: Intravenous
PO: Oral

Possible septic coronary emboli in a patient allergic to penicillins and cephalosporins.

Funding and conflict of interest

LA, CF & MH have nothing to disclose.

References

