Stability of Extemporaneously Prepared Sodium Benzoate Oral Solution

Andrew S. Decker
St. John Fisher College, asd07043@students.sjfc.edu

Melinda E. Lull
St. John Fisher College, mlull@sjfc.edu

David Hutchinson
St. John Fisher College, dhutchinson@sjfc.edu

How has open access to Fisher Digital Publications benefited you?
Follow this and additional works at: http://fisherpub.sjfc.edu/pharmacy_facpub

Part of the Pharmacy and Pharmaceutical Sciences Commons

Publication Information
http://fisherpub.sjfc.edu/pharmacy_facpub/85

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at http://fisherpub.sjfc.edu/pharmacy_facpub/85 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact fisherpub@sjfc.edu.
Stability of Extemporaneously Prepared Sodium Benzoate Oral Solution

Abstract
Purpose: Sodium benzoate (NaC7H5O2), a common food preservative, is the salt form of benzoic acid. It is used as an alternative treatment in patients with hepatic encephalopathy or urea cycle disorders as it is believed help stimulate ammonia removal via a non-urea cycle based pathway. Despite its use, sodium benzoate is not an FDA approved medication and has no commercially available oral formulations, although an IV formulation is available in combination with sodium phenylacetate (Ammonul®). The objectives of this study were to prepare a sodium benzoate solution and determine the stability of an extemporaneously prepared oral solution over a 90-day period.

Methods: An oral solution of sodium benzoate was prepared and a 1 ml sample was withdrawn from each bottle immediately after preparation and at 7 and 14 days and assayed for drug concentration by stability-indicating high performance liquid chromatography. Stability of sodium benzoate solution will be defined as maintenance of greater than or equal to 90 percent of the initial concentration.

Results: The sodium benzoate maintained 96% and 93% of the initial concentration at 7 and 14 days, respectively. Therefore, sodium benzoate oral solution in cherry syrup is stable for a minimum of 14 at room temperature.

Keywords
fsc2016

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments
Presented at American Society of Health Systems Pharmacy Midyear Clinical Meeting in New Orleans, Louisiana, December 2015.

This poster presentation is available at Fisher Digital Publications: http://fisherpub.sjfc.edu/pharmacy_facpub/85
Stability of Extemporaneously Prepared Sodium Benzoate Oral Solution

Andrew S. Decker Pharm.D.1,2,3, Melinda E. Lull, Ph.D.2,4, David J. Hutchinson Pharm.D., BCPS, BCPPS2,3
University of Rochester Medical Center - Rochester, NY 4) St. John Fisher College - Wegmans School of Pharmacy – Rochester, NY

Background

- Urea cycle disorders (UCD) occur in 1:8500 births and lead to an accumulation of ammonia due to a deficiency of the enzyme(s) utilized in the urea cycle.
- Depending on the severity, UCD can lead to growth suppression, neurologic changes, seizures, coma, and death.
- Sodium benzoate is believed to stimulate ammonia removal via the Hippurate pathway, independent of the urea cycle.
- Sodium benzoate/sodium phenylacetate (Ammonul®) is an FDA approved IV formulation approved for the treatment of UCD.

Objectives

- Determine the 90-day stability of sodium benzoate oral solution, defined as the retention of at least 90% of the initial concentration.
- Depending on the severity, UCD can lead to growth suppression, neurologic changes, seizures, coma, and death.

Methods

Sample Preparation:
- Twenty five grams of sodium benzoate was added to a beaker containing 50 ml of sterile water and stirred until dissolved.
- The resulting solution was filtered via Whatman filter paper and added to a 4-oz amber bottle pre-calibrated to 100 ml.

Preparation for Analysis:
- Prepared samples for shaken for 1 minute before sampling.
- A 1 ml aliquot was removed from each sample and diluted to 100 ml with diluent (50:50 mixture of sterile water and acetone/tritile) for a concentration of 2.5 mg/ml.

Analysis:
- Samples were analyzed via a Shimadzu HPLC with a C18 column and mobile phase of 30:70 acetonitrile and 20-mM monobasic potassium phosphate adjusted to pH of 2.5 with phosphoric acid.
- A 15 ul sample was injected and analyzed with the detector set at 230 nm.

Results

- Sodium benzoate oral solution in cherry syrup appears to be stable for at a minimum of 14 days at room temperature.
- Further stability analysis will be conducted at days 30, 60, and 90.
- A forced degradation analysis will also be conducted by exposing the samples to acidic and basic pH, hydrogen peroxide, direct sunlight, and prolonged exposure to 60°C,

Conclusion

- Sodium benzoate oral solution in cherry syrup is appears to be stable for at a minimum of 14 days at room temperature.
- Further stability analysis will be conducted at days 30, 60, and 90.

References

2. Cederbaum S. What are the treatment options? National Urea Cycle Disorders Foundation [Internet]. Available from: http://www.nucdf.org/ucd_symptoms.htm

Authors of this project have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation: Andrew S. Decker: Nothing to disclose; Melinda E. Lull: Nothing to disclose; David J. Hutchinson: Nothing to disclose.