Development and Implementation of a Heparin-Induced Thrombocytopenia Pathway in a Trauma ICU

Kathryn A. Connor
St. John Fisher College, kaconnor@sjfc.edu

G. Christopher Wood

Joseph M. Swanson

Bradley A. Boucher

How has open access to Fisher Digital Publications benefited you?

Follow this and additional works at: http://fisherpub.sjfc.edu/pharmacy_facpub

Part of the Pharmacy and Pharmaceutical Sciences Commons

Publication Information

Connor, Kathryn A.; Wood, G. Christopher; Swanson, Joseph M.; and Boucher, Bradley A., "Development and Implementation of a Heparin-Induced Thrombocytopenia Pathway in a Trauma ICU" (2009). Pharmacy Faculty Publications. Paper 37.
http://fisherpub.sjfc.edu/pharmacy_facpub/37

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at http://fisherpub.sjfc.edu/pharmacy_facpub/37 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact fisherpub@sjfc.edu.
Development and Implementation of a Heparin-Induced Thrombocytopenia Pathway in a Trauma ICU

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments
Presented at the American College of Clinical Pharmacy Annual Meeting in Anaheim, California, October 2009.

This conference proceeding is available at Fisher Digital Publications: http://fisherpub.sjfc.edu/pharmacy_facpub/37
Development and Implementation of a Heparin-Induced Thrombocytopenia Pathway in a Trauma ICU

Kathryn A. Connor, Pharm.D., BCPS
G. Christopher Wood, Pharm.D., FCCP, BCPS
Joseph M. Swanson, Pharm.D., BCPS
Bradley A. Boucher, Pharm.D., BCPS, FCCP, FCCM

ACCP Fall Meeting; October 2009; Anaheim, CA

Anticoagulation in the Presley Trauma Center

• Prophylactic UFH preferred for DVT prophylaxis
 • Head trauma, acetabulum fracture, other cases of high bleeding risk
 • May be preferred in renal dysfunction, pregnancy
• Prophylactic enoxaparin otherwise agent of choice for DVT prophylaxis
• Trauma patients at high risk of VTE, many require bridging to warfarin, long-term anticoagulation

Heparin-Induced Thrombocytopenia (HIT)

• Clinicopathologic syndrome
 – Clinical signs + laboratory confirmation
• Thrombocytopenia common in critically ill
 – Incidence: up to 40%
 – Causes confounding
• Systematic evaluation of thrombocytopenia essential to:
 – Diagnosis
 – Management

Thrombocytopenia: Differential Diagnosis in Trauma Patients

• Sepsis and HAIs
• Hemodilution
• Drugs
• Liver disease
• Hypersplenism
• DIC
• Antiphospholipid antibody syndrome / lupus anticoagulant
• ITP, TTP, PTP
• Intravascular devices

Prior to Study

• No standardized approach to managing HIT in Presley Trauma Center
• Inappropriate evaluation of thrombocytopenia and laboratory analysis performed
• Increased costs in diagnosis and treatment of suspected HIT

Preliminary Data

• 56 Patients in Trauma ICU (TICU): 1/6-1/31 2009
• 12 patients experienced thrombocytopenia (decrease in platelets >50% of baseline value)
• 1 patient qualified for HIT pathway
 – HIT antibody negative
Trauma ICU HIT Clinical Pathway

56 Patients in TICU: 1/6-1/31 2009

12 patients had thrombocytopenia, 1 patient qualified for HIT pathway

- DVT/↓Platelets > 50%†
- D/C all UFH and LMWH, including heparin flushes and heparin in dialysis ports.
- Start Lepirudin††
- Send HIT Antibody and Platelet function tests

† Platelet decrease seen within 5-14 days of starting heparin. Multiple points can be applied if patient has been on heparin in previous hospitalizations.
†† Send HIT Antibody and Platelet function tests
††† VTE: Continue warfarin per ACCP/Chest guidelines: Chest 2008;133;71S-109S. This will be an attending-specific decision. If warfarin isn't started, may use Arixtra for prophylaxis.

Pre-Test Probability of HIT (4Ts)

<table>
<thead>
<tr>
<th>Points (0, 1, or 2 for Each of Four Categories)</th>
<th>Maximum Possible Score = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia > 50% fall to nadir > 20 x 10^9/L</td>
<td>2</td>
</tr>
<tr>
<td>30-50% fall; nadir 10-19 x 10^9/L</td>
<td>1</td>
</tr>
<tr>
<td>< 30% fall; nadir < 10 x 10^9/L</td>
<td>0</td>
</tr>
<tr>
<td>Timing of platelet fall</td>
<td></td>
</tr>
<tr>
<td>Days 5-10; 1 day + heparin (past 30 days)</td>
<td>2</td>
</tr>
<tr>
<td>> day 10 / timing unclear</td>
<td>1</td>
</tr>
<tr>
<td>< day 5 + heparin (past 31-100 days)</td>
<td>0</td>
</tr>
<tr>
<td>< day 4 no heparin (past 100 days)</td>
<td></td>
</tr>
<tr>
<td>Thrombosis</td>
<td></td>
</tr>
<tr>
<td>New thrombosis; skin necrosis; acute reaction</td>
<td>2</td>
</tr>
<tr>
<td>Skin lesions; suspected thrombosis (unproven)</td>
<td>1</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Other cause(s) of platelet fall</td>
<td></td>
</tr>
<tr>
<td>None evident</td>
<td>0</td>
</tr>
<tr>
<td>Possible</td>
<td>1</td>
</tr>
<tr>
<td>Definite</td>
<td>2</td>
</tr>
</tbody>
</table>

Pre-Test Probability of HIT (Modified 4Ts)

<table>
<thead>
<tr>
<th>Points (0, 1, or 2 for Each of Four Categories)</th>
<th>Maximum Possible Score = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia > 50%</td>
<td>2</td>
</tr>
<tr>
<td>30-50% fall; nadir 10-19 x 10^9/L</td>
<td>1</td>
</tr>
<tr>
<td>< 30% fall; nadir < 10 x 10^9/L</td>
<td>0</td>
</tr>
<tr>
<td>Timing of platelet fall</td>
<td></td>
</tr>
<tr>
<td>Days 5-14</td>
<td>2</td>
</tr>
<tr>
<td>< day 5</td>
<td>1</td>
</tr>
<tr>
<td>< day 4</td>
<td>0</td>
</tr>
<tr>
<td>Thrombosis</td>
<td></td>
</tr>
<tr>
<td>New thrombosis; skin necrosis; acute reaction</td>
<td>2</td>
</tr>
<tr>
<td>Skin lesions; suspected thrombosis (unproven)</td>
<td>1</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Other cause(s) of platelet fall</td>
<td></td>
</tr>
<tr>
<td>None evident</td>
<td>0</td>
</tr>
<tr>
<td>Possible</td>
<td>1</td>
</tr>
<tr>
<td>Definite</td>
<td>2</td>
</tr>
</tbody>
</table>

HIT Treatment

<table>
<thead>
<tr>
<th>Agent</th>
<th>Cost/day</th>
<th>Adverse Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argatroban</td>
<td>~$2,000-6,300</td>
<td>↑ INR (drug/lab interaction)</td>
<td>Requires close aPTT monitoring, adj in hepatic dysfx, discontinue ≥ 4 hrs before procedure Investigational, adj in renal dysfx, monitor aPTT</td>
</tr>
<tr>
<td>Bivalirudin (Angiomax®)</td>
<td>$688</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HIT Treatment Continued

<table>
<thead>
<tr>
<th>Agent</th>
<th>Cost/day</th>
<th>Adverse Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepirudin (Refudan®)</td>
<td>$1200</td>
<td>Anti-lepirudin antibodies, may increase INR</td>
<td>Requires close aPTT monitoring, adj in renal dysfx</td>
</tr>
<tr>
<td>Fondaparinux (Arixtra®)</td>
<td>$48</td>
<td></td>
<td>Long half-life (~ 20 hrs), adj in renal dysfx</td>
</tr>
</tbody>
</table>
HIT Laboratory Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Location Performed</th>
<th>Turnaround Time</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIT Antibody</td>
<td>Baptist East</td>
<td>1-4 days</td>
<td>$146/test</td>
</tr>
<tr>
<td>Platelet Function Test</td>
<td>Lab Core Memphis</td>
<td>5-7 days</td>
<td>$220/test</td>
</tr>
</tbody>
</table>

Limitations

- Lepirudin agent of choice for TICU HIT Clinical Pathway based largely on cost
- Pathway not designed to recognize all types of HIT
- Pathway focuses on diagnosis and management of HIT, not prevention

Recommendations

- Criteria for pathway entry: Platelet values (>50% drop) and medication (timing of heparin)
- Send HIT antibody and platelet function tests
- Lepirudin as initial drug
- Coumadin x 4 weeks for HIT

Post Study

- Preliminary data and HIT clinical pathway presented at Trauma Conference
- Extensive trauma staff education
- Increased knowledge of HIT pathophysiology and rational approach to diagnosis and treatment
- Appropriate concern, laboratory analysis, decreased costs in diagnosis and treatment

Conclusions

- HIT is a clinicopathologic diagnosis, and presents a problem in trauma patients
- Proposed HIT clinical pathway helps simplify and standardize diagnosis and treatment of HIT to avoid morbidity and mortality related to this life-threatening disorder and its complications.

Patient Example: Trauma Pt X

- Plts on admit: 300
- Plts Day 1: 250
- Plts Day 2: 200
- Plts Day 3: 225
- Plts Day 4: 215
- Plts Day 5: 210
 - Heparin Started
- Plts Day 6: 145
 - Decrease >50% from admit value
- Plts Day 7: 75
- Plts Day 8: 70
 - Day 4 heparin, “baseline”
- Plts Day 9: 73
- Plts day 10: 80
- Plts Day 11: 100
- Plts Day 12: 105

Plts need to fall to <35 to meet criteria
Development and Implementation of a Heparin Induced Thrombocytopenia Pathway in a Trauma ICU

Kathryn A. Connor, Pharm.D., BCPS
G. Christopher Wood, Pharm.D., FCCP, BCPS
Joseph M. Swanson, Pharm.D., BCPS
Bradley A. Boucher, Pharm.D., BCPS, FCCP, FCCM

Additional References

Additional References

Additional References