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Solitary waves for two and three coupled nonlinear Schro¨dinger equations

F. T. Hioe
Department of Physics, St. John Fisher College, Rochester, New York 14618

~Received 27 March 1998!

We present solitary-wave solutions of two and three coupled nonlinear Schro¨dinger equations when the
waves propagate in the normal and anomalous group-velocity dispersion regions. A wave of the form
sech2 j2

2
3 is found, which, together with two known waves of the forms tanhj sechj and sech2 j, are shown

to form a new generation of complementary waves. The implication of this wave set and its applications to
coupled solitary-wave propagation is discussed.@S1063-651X~98!07411-X#

PACS number~s!: 42.65.Tg, 42.81.Dp, 03.40.Kf

I. INTRODUCTION

Because of its many useful applications in nonlinear op-
tics @1#, the problem of two interacting optical waves that
satisfy two coupled nonlinear Schro¨dinger ~NLS! equations
and that are shape-preserving~solitary! has been extensively
studied for many years. The well-known cases of interaction
between two solitary waves are~i! two bright solitary waves
that propagate in the anomalous group-velocity dispersion
~GVD! region@2#, ~ii ! one bright solitary wave in the anoma-
lous GVD region that interacts with a dark solitary wave in
the normal GVD region@3#, ~iii ! one bright solitary wave in
the normal GVD region that interacts with a dark solitary
wave in the anomalous GVD region@4#, and ~iv! two dark
solitary waves that propagate in the normal GVD region@5#.
The simplest bright and dark solitary waves have the forms
sech(aj) and tanh(aj), respectively, wherea is some con-
stant andj5t2z/v, with t, z, andv denoting the time, dis-
placement, and velocity. A solitary wave pair that consists of
a product type of the forms tanh(aj)sech(aj) and sech2(aj)
was given by Tratnik and Sipe@6#, that of the forms
tanh(aj)sechs21(aj) and sechs(aj), wheres is between 1 and
2, was given by Silberberg and Barad@7#, and that where
both waves are asymmetric but which reduce under certain
limits to the forms tanh(a1j)sech(a2j) and sech(a1j) was
given by Christodoulides and Joseph@8#. Solitary waves,
each of which is a superposition of bright and dark solitary
waves, were given by the author@9#, and many periodic soli-
tary waves, which are expressed in terms of Jacobian elliptic
functions or their products, were given by several authors
@9–12#.

Let us denote the simplest forms of dark and bright soli-
tary waves by

f 1~j!5tanh~aj!

and

f 2~j!5sech~aj!, ~1!

respectively. We refer to Eq.~1! as the first generation of
solitary wave set.

In this paper, we present a number of coupled solitary
waves for two and three coupled NLS equations that propa-
gate in the normal and in the anomalous GVD regions. First
we present a solitary wave pair for two coupled waves that

propagate in the normal GVD region. The pair consists of a
solitary wave of the form sech2(aj)22

3. Indeed, we shall
show that the set of three solitary waves of the forms

g1~j!5sech2~aj!2 2
3 ,

g2~j!5tanh~aj!sech~aj!,

g3~j!5sech2~aj! ~2!

can be appropriately considered as the second generation of
solitary wave set. This generation consists of the three mem-
bers of Eq.~2! ~which we shall call red, white, and blue
solitary waves for easy reference, as opposed to dark and
bright solitary waves of the first generation!, and we show
that it is one of the simplest sets of ‘‘complementary’’
solitary-wave solutions, i.e., a solution that consists of three
differentwave forms, for three coupled NLS equations. Sub-
sets of it appear as solutions for two coupled NLS equations:
the white-blue or (g2 ,g3) combination given by Tratnik and
Sipe @6#, and the red-white or (g1 ,g2) combination that we
present in this paper. The significance of this wave form and
the realization that it is one of the solitary waves for a solu-
tion of three coupled NLS equations will be further amplified
in the following sections.

II. N COUPLED NONLINEAR SCHRÖ DINGER
EQUATIONS

When two optical waves of different frequencies copropa-
gate in a medium and interact nonlinearly through the me-
dium, the propagation equation for slowly varying complex
amplitudefm(z,t) of the mth electric field is@1#

ifmz1 ib1mfmt2
b2m

2
fmtt1

iam

2
fm

1gm~ f mmufmu212 f mm8ufm8u
2!fm50,

m51,2, m8Þm, ~3!

where b1m51/vgm , vgm is the group velocity,b2m is the
group-velocity dispersion~GVD! coefficient,am is the loss
coefficient,gm is the nonlinear coefficient, andf mm8 is the
overlap integral, and where the subscripts inz and t denote
derivatives with respect toz andt as opposed to the subscript
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m for different components. The medium is said to exhibit
normal dispersion ifb2.0, anomalous dispersion ifb2,0.

If the nonlinear coupling is between two polarization
componentsfm(z,t), m51,2, of a wave at some central
frequency, the propagation equations are

if1z1 ib11f1t2
b2

2
f1tt1

ia

2
f11g@~ uf1u21puf2u2!

3f11qf1* f2
2e22iDbz#50,

~4!

if2z1 ib12f2t2
b2

2
f2tt1

ia

2
f21g@~ uf2u21puf1u2!

3f21qf2* f1
2e2iDbz#50,

whereDb5b112b12 is the wave-vector mismatch due to,
for example, the birefringence of the medium through which
the wave propagates, and the parametersp and q satisfy p
1q51. For a medium such as an optical fiber with a rela-
tively large birefringence, the wave propagation equations
can be approximated by

if1z1 ib11f1t2
b2

2
f1tt1

ia

2
f11g~ uf1u21Buf2u2!

3f150,

if2z1 ib12f2t2
b2

2
f2tt1

ia

2
f21g~ uf2u21Buf1u2!

3f250,

whereB can vary between 2/3 and 2, and these equations are
similar to Eqs.~3!.

If the two coupled waves or components propagate with
approximately the same group velocityv, theib1mfmt terms
in Eqs. ~3! and ~4! can be eliminated by the transformation
t→t2z/v, and Eqs.~3! and ~4! become coupled nonlinear
Schrödinger-like equations.

The two sets of equations~3! and ~4! are mathematically
similar, and their generalization toN(.2) coupled waves or
components can be written down. Analytic solutions, mainly
in the form of coupled solitary waves, are possible only for
some special cases. The analytic solitary waves we shall
present in this paper forN52 and 3 are also only applicable
to some special cases. However, they could provide some
useful guides for studies of two or three nonlinearly coupled
waves that propagate under conditions that are not too dif-
ferent from the physical conditions that have been assumed
to permit these solitary waves.

Instead of writing down the generalN coupled wave
equations, we begin with the following two equivalent sets,
Eqs.~5! and~6! below, ofN coupled wave equations, which
can be seen to reduce, forN52, to Eqs.~3! ~with specific
values for f ’s! and ~4!, respectively. ConsiderN coupled
equations for the slowly varying complex amplitudes or
componentsfm(z,t), m51,2,...,N of the electric fields
propagating along thez axis that satisfy the following
coupled nonlinear Schro¨dinger-like equations:

ifmz1fmtt1kmfm1pmS (
j 51

N

uf j u2Dfm1qmS (
j 51

N

f j
2D

3fm* 50, m51,...,N, ~5!

wherep’s andq’s are dimensionless parameters that we as-
sume satisfy the relationpm1qm5«, «511 or 21. A
closely related set of coupled equations is

icmz1cmtt1pmS (
j 51

N

uc j u2Dcm

1qmS (
j 51

N

c j
2e2ik j zDcm* e22ikmz50, m51,...,N

~6!

which can be transformed into Eq.~5! with the substitutions
cm5fmexp(2ikmz). We first search for the stationary-wave
solution of the form

fm~z,t !5xm~ t !exp~ iVz!, ~7!

whereV is a real constant, andxm(t) are real functions oft
only. Equations~5! reduce to the following, which we call
the associated dynamical coupled nonlinear Schro¨dinger
equations:

ẍm2Amxm1«S (
j 51

N

xj
2D xm50, m51,...,N, ~8!

where Am5V2km , ẋ denotesdx/dt, and «511 or 21.
Because Eqs.~5! and~6! are invariant under a Galilean trans-
formation, traveling waves can be constructed from Eq.~7!
by replacingfm(z,t) by

fm~z,t2z/v !exp@ i ~ t2z/2v !/~2v !#, ~9!

wherev is the velocity of the waves.
The case«511, N51 for Eq. ~5! @or Eq. ~6!# can be

identified with the standard NLS equation for waves that
propagate in the anomalous GVD region and one that gives
the bright solitary wave; and the case«521, N51 can be
seen to be equivalent to the standard equation for waves that
propagate in the normal GVD region and one that gives the
dark solitary wave. ForN.1, it should be noted that Eqs.~5!
have either«511 or «521 for all N equations, i.e., where
all N coupled waves propagate either in the anomalous («
511) GVD region or in the normal («521) GVD region,
not any ‘‘mixed’’ cases where one or more of the equations
have«511 and21. To eliminate the permutation symme-
try, we assume that the equations in~8! have been arranged
according toA1<A2<¯<AN .

III. TWO COUPLED NLS EQUATIONS

We first present nine periodic~or elliptic! solutions in
terms of Jacobian elliptic functions of modulusk for N52,
«511 of Eqs.~8!. Seven of these that do not include those
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with the same wave forms were given earlier@12#, but some
of them were not expressed in the most simplified form in
Ref. @12#. We present the complete set below, which we
number~I! to ~IX !; note in particular solutions~III ! and ~V!
and solutions~VIII ! and~IX !, which are expressed in simpler
forms more suitable for comparisons with our other results
later. The modulusk of the elliptic functions given below is
in the range 0,k2<1 unless otherwise specified.

Solution ~I!:

x15C1sn~at,k!, x25C2cn~at,k!,

a25~A22A1!/k2, C1
25A21a222a2k2,

C2
25A21a2, A2.A1 .

Solution ~II !:

x15C1k sn~at,k!, x25C2dn~at,k!,

a25A22A1 , C1
25A21a2k222a2,

C2
252A22a2k2, A2.A1 .

Solution ~III !:

x15C1cn~at,k!, x25C2cn~at,k!,

a25A1 /~2k221!, C1
21C2

252a2k2, A15A2 ,

A1.0 for k2.1/2, A1,0 for k2,1/2.

Solution ~IV !:

x15C1~k/k8!cn~at,k!, x25C2~1/k8!dn~at,k!,

a25~A22A1!/k82, C1
252A22a2k212a2,

C2
25A22a2k2, A2.A1 .

Solution ~V!:

x15C1dn~at,k!, x25C2dn~at,k!,

a25A1 /~22k2!, C1
21C2

252a2, A15A2.0.

Solution ~VI !:

x15Ck sn~at,k!cn~at,k!, x25C cn~at,k!dn~at,k!,

a25~A22A1!/3, k25~4A22A1!/@5~A22A1!#,

C252~4A22A1!/5, A2>4A1 .

Solution ~VII !:

x15C sn~at,k!dn~at,k!, x25C cn~at,k!dn~at,k!,

a25~4A22A1!/15, k255~A22A1!/@~4A22A1!#,

C252~4A22A1!/5, A1,A2<4A1 .

Solution ~VIII !:

x15Ck2sn~at,k!cn~at,k!, x25C@ 1
3 G12k2sn2at,k!],

a25
1

10
@A 5

3 ~A2
22A1

2!12A223A1#

k25
2A 5

3 ~A2
22A1

2!

A 5
3 ~A2

22A1
2!12A223A1

,

C5
3

5

A 5
3 ~A2

22A1
2!12A223A1

A2~A22A1!
,

1
3 G15F3

2
2

1

2 S 3~A21A1!

5~A22A1! D
1/2G21

,

A2>4A1 .

Solution ~IX !:

x15Ck sn~at,k!dn~at,k!, x25C@ 1
3 G12k2sn2~at,k!#,

a25A 1
15 ~A2

22A1
2!, k25

A 5
3 ~A2

22A1
2!12A223A1

2A 5
3 ~A2

22A1
2!

,

C5A 6
5 ~A11A2!, 1

3 G15
1

2
1

1

2 S 5~A22A1!

3~A21A1! D
1/2

,

8A1/7,A2<4A1 .

It should be noted that whenever the two solitary waves
are of the same form, it necessarily requires that the corre-
spondingA’s in Eqs. ~8! must be equal. This is one reason
that the use of different or complementary wave forms is
sometimes advantageous or necessary as it permits more
freedom in the choice of parameters compared to the use of
the same wave form. These nine solutions reduce to only
three distinct solutions in terms of~1! and ~2! when k251,
and they are given in Table I. Solution~3! of Table I, which
gives the solitary wave pair (g2 ,g3) involving a subset of the
second generation of solitary wave set was first given by
Tratnik and Sipe@6#.

Next, we present below five elliptic solutions forN52,
«521, of Eqs.~8!, which we number~i!–~v!. Both A1 and
A2 are assumed to be,0.

TABLE I. Solutions of Eqs.~8! for N52, «511.

~1! ~2! ~3!

x1 C1f 1 C1f 2 C1g2

x2 C2f 2 C2f 2 C2g3

A’s A2.A1.0 A15A2.0 A254A1.0
a2 A22A1 A1 A1

C’s C1
25A1 C1

21C2
252A1 C1

25C2
256A1

C2
252A22A1

6702 PRE 58F. T. HIOE



Solution ~i!:

x15C1sn~at,k!, x25C2sn~at,k!,

a252A1 /~11k2!, C1
21C2

252a2k2, A15A2 .

Solution ~ii !:

x15C1sn~at,k!, x25C2cn~at,k!,

a25~A22A1!/k2, C1
252A22a212a2k2,

C2
252A22a2, A2.A1 .

Solution ~iii !:

x15C1k sn~at,k!, x25C2dn~at,k!,

a25A22A1 , C1
252A22a2k212a2,

C2
252A22a2k2, A2.A1 .

Solution ~iv!:

x15C@ 1
3 G22k2sn2~at,k!#, x25Ck2sn~at,k!cn~at,k!,

a25 1
10 ~A 5

3 ~A1
22A2

2!12A123A2!,

k25
2A 5

3 ~A1
22A2

2!

A 5
3 ~A1

22A2
2!12A123A2

,

C5
3

5

A 5
3 ~A1

22A2
2!12A123A2

A2~A22A1!
,

1

3
G25F3

2
1

1

2 S 3~A11A2!

5~A12A2! D
1/2G21

,

~8/7!A2<A1,A2 .

Solution ~v!:

x15C@ 1
3 G22k2sn2~at,k!#, x25Ck sn~at,k!dn~at,k!,

a25A 1
15 ~A1

22A2
2!, k25

A 5
3 ~A1

22A2
2!12A123A2

2A 5
3 ~A1

22A2
2!

,

C5A2 6
5 ~A11A2!,

1

3
G25

1

2
2

1

2 S 5~A12A2!

3~A11A2! D
1/2

,

4A2,A1<~8/7!A2 .

These five solutions reduce to three distinct solutions in
terms of Eqs.~1! and~2! whenk251, and they are given in
Table II. In particular, solution~3! of Table II gives a solitary
wave pair (g1 ,g2) that involves a wave formg1 , and that,
together with solution ~3! of Table I suggests that
(g1 ,g2 ,g3) may be a triplet of complementary waves that
should be considered together. The periodic form of this
wave (g1) is 1

3 G22k2sn2(at,k). Let us first present the
solutions of Eqs.~8! for N53 in the next section.

IV. SOLUTIONS OF COUPLED NLS EQUATIONS
FOR N53

In terms of Eqs.~1! and ~2!, the aperiodic solutions of
Eqs. ~8! for N53 are given in Tables III and IV for
«511, and in Tables V and VI for«521. In particular, the

TABLE II. Solutions of Eqs.~8! for N52, «521.

~1! ~2! ~3!

x1 C1f 1 C1f 1 C1g1

x2 C2f 1 C2f 2 C2g2

A’s A15A2,0 A2,0, A2.A1 A15
8
7 A2,0

a2 2A1/2 A22A1 2A1/8
C’s C1

21C2
252A1 C1

252A1 C1
25C2

2529A1/4
C2

2522A21A1

TABLE III. Solutions of Eqs.~8! in f’s of Eq. ~1! for N53, «
511.

~1! ~2! ~3!

x1 C1f 1 C1f 1 C1f 2

x2 C2f 1 C2f 2 C2f 2

x3 C3f 2 C3f 2 C3f 2

A’s A3.A15A2.0 A25A3.A1.0 A15A25A3.0
a2 A32A1 A22A1 A1

C’s C1
21C2

25A1 C1
25A1 C1

21C2
21C3

252A1

C3
252A32A1 C2

21C3
252A22A1

TABLE IV. Solutions of Eqs.~8! in g’s of Eq. ~2! for N53, «511.

~4! ~5! ~6!

x1 C1g1 C1g2 C1g2

x2 C2g2 C2g2 C2g3

x3 C3g3 C3g3 C3g3

A’s A354A223A1 , A2.A1.0 A354A154A2.0 A35A254A1.0
a2 A22A1 A1 A1

C’s C1
259A1/4 C1

21C2
25C3

256A1 C1
25C2

21C3
256A1

C2
253(2A22A1)

C3
253(8A227A1)/4
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only complementary solutions, i.e., solutions that consist of
different wave forms, are solution~4! of Table IV for
«511 and solution~6! of Table VI for «521. These two
solutions can be conveniently expressed together as

x15C1g1 , x25C2g2 , x35C3g3 , ~10!

where

C1
259«A1/4, C2

253«~2A22A1!,

C3
253«~8A227A1!/4, a25A22A1 ,

A354A223A1 ,

A2.A1.0 for «511,

A1,0, A2.A1>8A2/7 for «521.

We thus come to the important realization that
(g1 ,g2 ,g3) is a solution forN53, «511 or 21. It means
that even though the red solitary wave (g1) cannot propagate
in the anomalous GVD region with another coupled wave
~for N52!, and that the blue solitary wave (g3) cannot
propagate in the normal GVD region with another coupled
wave~for N52!, either of themcanpropagate in the normal
or the anomalous GVD region if it is coupled withtwo other
waves of different colors.

We may recall a similar situation when we go from
N51 to N52 for Eq. ~5!, where the bright solitary wave is
a solution forN51, «511 and not«521, and that the
dark solitary wave is a solution forN51, «521 and not
«511, but where the coupled bright and dark solitary wave
pair can propagate in either the normal or anomalous GVD

region, i.e., the bright-dark solitary wave pair is a solution
for N52, for «511 or 21. Thus to experimentally realize
our solitary wave pair (g1 ,g2) that consists of a wave form
g1 , the pair needs to propagate in the normal GVD region,
but it can also propagate in the anomalous GVD region if the
pair is coupled tog3 . Similarly, the solitary wave pair
(g2 ,g3) found by Tratnik and Sipe@6# that can propagate in
the anomalous GVD region can be made to propagate in the
normal GVD region if the pair is coupled tog1 .

Tables IV and VI show that forN53 two other combi-
nations involving (g1 ,g2) are possible for «521:
(g1 ,g2 ,g2) and (g1 ,g1 ,g2); and two other combinations in-
volving (g2 ,g3) are possible for«511: (g2 ,g2 ,g3) and
(g2 ,g3 ,g3). That means that to send solitary waves of the
second generation through a medium, the red solitary wave
(g1) is always needed as one of the coupled waves if the
waves are to travel in the normal GVD region, the blue soli-
tary wave (g3) is always needed as one of the coupled waves
if the waves are to travel in the anomalous GVD region, and
the white solitary wave (g2) is always needed as one of the
coupled waves in either region.

As in the case forN52, periodic or elliptic solutions can
be found for the caseN53. We present three such solutions
here that reduce to Eq.~10! whenk251.

Solution ~I!:

x15C1a@ 1
3 G22k2sn2~at,k!#,

x25C2ak sn~at !cn~at,k!],

x35C3ak cn~at !dn~at,k!],

where

TABLE V. Solutions of Eqs.~8! in f’s of Eq. ~1! for N53, «521.

~1! ~2! ~3!

x1 C1f 1 C1f 1 C1f 1

x2 C2f 1 C2f 1 C2f 2

x3 C3f 1 C3f 2 C3f 2

A’s A15A25A3,0 A15A2,0 A25A3,0
A3.A1.2A3 A2.A1.2A2

a2 2A1/2 A32A1 A22A1

C’s C1
21C2

21C3
252A1 C1

21C2
252A1 C1

252A1

C3
2522A31A1 C2

21C3
2522A21A1

TABLE VI. Solutions of Eqs.~8! in g’s of Eq. ~2! for N53, «521.

~4! ~5! ~6!

x1 C1g1 C1g1 C1g1

x2 C2g1 C2g2 C2g2

x3 C3g2 C3g2 C3g3

A’s A15A258A3/7,0 A25A357A1/8,0 A354A223A1 , A1,0
A2.A1>8A2/7

a2 2A1/8 2A1/8 A22A1

C’s C1
21C2

25C3
2529A1/4 C1

25C2
21C3

2529A1/4 C1
2529A1/4

C2
253(22A21A1)

C3
253(28A217A1)/4
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G6511k26~12k21k4!1/2,

a25 1
3 ~A32A2!, k25 1

3 @2~g22!12~g22g22!1/2#,

g5~2A31A223A1!/~A32A2!,

C1
25«@~4A32A2!/~A32A2!25k2#/@ 1

9 G2
2 2 2

3 G2k21k4#,

C3
25~k22 2

3 G2k2!C1
216«,

C2
25k2~C1

21C3
2!.

This solution is applicable in the region 2,g<3, 0,k2

<1, or A3>4A223A1 , and A2.A1 . For «511, A1.0,
and for «521, A2 ,A1,0; and it becomes Eq.~10! when
A354A223A1 for which g53 andk251. Compared to the
aperiodic solutions, periodic solitary-wave solutions permit

an additional freedom of choice that can be used to affect the
shapes and amplitudes of the waves.

Solution ~II !:

x15C1a@ 1
3 G22k2sn2~at,k!#,

x25C2ak sn~at !cn~at,k!,

x35C3a@ 1
3 G12k2sn2~at,k!#,

where

G6511k26~12k21k4!1/2,

a25~A32A2!/~41k222G2!,

k25~2g222!/@g2211~3g223!1/2#,

g5~A32A1!/~A322A21A1!,

C1
25

«$6A2G1~G123k2!23A1@22G1
21~2G123k2!~41k2!#%

@2k4~G12G2!~A22A1!#
,

C3
252«@61~k22 2

3 G2!C1
2#/~k22 2

3 G1!,

C2
25k2~C1

21C3
2!.

This solution is applicable in the region 1,g<2, 0,k2

<1, or A3>4A223A1 , and A2.A1 . For «511, A1.0,
and for «521, A1 ,A2 ,A3,0. It becomes Eq.~10! when
A354A223A1 for which g52, andk251.

Solution ~III !:

x15C1a@ 1
3 G22k2sn2~at,k!#,

x25C2ak sn~at !dn~at,k!,

x35C3aF1

3
G12k2sn2~at,k!G ,

where

G6511k26~12k21k4!1/2,

a25~A32A2!/~114k222G2!,

k25@g2211~3g223!1/2#/~2g222!,

g5~A32A1!/~A322A21A1!,

C1
25

«$6A2G1~G123!23A1@22G1
21~2G123!~114k2!#%

@2~G12G2!~A22A1!#
,

C3
252«@61~12 2

3 G2!C1
2#/~12 2

3 G1!,

C2
25C1

21C3
2.

This solution is applicable in the regiong>2, 1/2,k2<1, or
A1,A2,A3<4A223A1 . For «511, A1.0, and for«5
21, A1 ,A2 ,A3,0. It becomes Eq.~10! when A354A2

23A1 for which g52, andk251.
These three solutions are examples that show that even

though the solitary wave13 G22k2sn2(at,k) cannot propa-
gate in the anomalous GVD region with another coupled

wave, and the solitary wave13 G12k2sn2(at,k) cannot
propagate in the normal GVD region with another coupled
wave, either of themcan propagate in the normalor the
anomalous GVD region if it is coupled with two other suit-
able solitary waves.

The periodic solutions are of increasing interest especially
after a recent experimental observation of the evolution of an
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arbitrarily shaped input optical pulse train to the shape-
preserving Jacobian elliptic pulse-train corresponding to the
Maxwell-Bloch equations@13#.

V. OTHER NONLINEAR EQUATIONS

It seems natural to ask whether the wave13 G2

2k2sn2(at,k) or its aperiodic form sech2(at)22
3 when k2

51, appears as a solution of other simpler nonlinearly
coupled dynamical equations. The answer is affirmative, and
we shall give the following simple examples, even though
the equations may not be of any great physical interest.

Consider the two coupled nonlinear equations given by

ẍm1«~x11x2!xm5Amxm , m51,2,

and «511 or 21. ~11!

These coupled equations may be considered as the associated
dynamical equations of coupled equations of two interacting
complex field componentsf1(z,t) and f2(z,t) that satisfy
the following coupled equations:

ifmz1fmtt1kmfm1«~ uf1u1uf2u!fm50, m51,2,
~12!

as the transformations~7! and ~9! can be shown to apply to
Eqs. ~11! and ~12! also. A solution of Eq.~11!, for A2
.A1 , is

x15«C1a2@ 1
3 G22k2sn2~at,k!#,

x25«C2a2@ 1
3 G12k2sn2~at,k!#,

a25~A22A1!/@2~G12G2!#,
~13!

G6511k26~12k21k4!1/2,

C1526A1 /~A22A1!, C256A2 /~A22A1!, 0,k2<1.

The aperiodic solution of Eq.~13! ~for k251! is

x152« 3
2 A1g1 , x25« 3

2 A2g3 ,

~14!
a25~A22A1!/4.

The corresponding single nonlinear equation is

ẍ1«x25Ax. ~15!

For A,0, a solution of Eq.~15! is

x56«a2@ 1
3 G22k2sn2~at !#,

~16a!

a252A/@2~G12G2!#, G6511k26~12k21k4!1/2,

which, for k251, reduces to

x52« 3
2 Ag1 , a252A/4. ~16b!

For A.0, a solution of Eq.~15! is

x56«a2@ 1
3 G12k2sn2~at !#, ~17a!

a25A/@2~G12G2!#, G6511k26~12k21k4!1/2,

which, for k251, reduces to

x5 3
2 A«g3 , a25A/4. ~17b!

Note that solutions~16! and ~17! for the single nonlinear
equation~15! are exclusive of each other because of the con-
dition thatA is ,0 or .0, but the two coupled equations~11!
bring them together as solutions forx1 andx2 , respectively,
the required condition being simplyA1ÞA2 ~we have as-
sumedA1,A2 in our solutions~13! and ~14! but the order
can be clearly interchanged!. This is analogous to the situa-
tion we found when we considered the solutions from
N51 to N52 to N53 for Eqs. ~8!, which we discussed
following Eq. ~10!. Notice that the red-blue (g1 ,g3) combi-
nation given by Eqs.~14! is not found for Eqs.~8! for N
52.

VI. SUMMARY

In summary, we have presented solitary waves for two
and three coupled NLS equations, and in particular, solitary
waves@~i!–~v! in Sec. III and solution~3! of Table II# for
N52 that can propagate in the normal GVD region and,
when coupled with a third solitary wave, can propagate in
either the normal or the anomalous GVD region@Eq. ~10!,
solutions~I!–~III ! in Sec. IV, and solutions~4! and ~6! in
Tables IV and VI#. The wave1

3 G22k2sn2(at,k) or its ape-
riodic form sech2(at)22

3 is shown to be a solution of other
nonlinear equations~Sec. V! and is thus not uncommon.
These solitary waves are stable for«511, at least linearly
stable, as can be shown by following the stability analysis
given by Infeld @14# for similar periodic and aperiodic
coupled waves given by Grobe and the author@15#. The spe-
cial feature of this result is that not only a wave formg1 of
solitary wave has been found, but also the introduction of the
idea that ~i! a second generation of solitary waves
(g1 ,g2 ,g3) which form the simplest set of three different or
complementary waves, may, in addition to the two solitary
waves (f 1 , f 2) of the first generation, become a useful and
practical tool, and~ii ! a third coupled wave may indeed be
helpful for extending the region of applicability for propaga-
tion of a pair of solitary waves. Idea~i! may be used for
extending the variational approach@16# and may stimulate
systematic searches for the next generation of solitary waves.
Idea ~ii ! gives a concrete example that extended the very
successful idea of using two optical waves instead of one for
better control of wave propagation@15,17,18# to using three
optical waves instead of two.
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