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Abstract
We present solitary-wave solutions of two and three coupled nonlinear Schrédinger equations when the
waves propagate in the normal and anomalous group-velocity dispersion regions. A wave of the form

sech? £-2/3 is found, which, together with two known waves of the forms tanh £ sech £ and sech? £, are
shown to form a new generation of complementary waves. The implication of this wave set and its
applications to coupled solitary-wave propagation is discussed.
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Solitary waves for two and three coupled nonlinear Schrdinger equations

F. T. Hioe
Department of Physics, St. John Fisher College, Rochester, New York 14618
(Received 27 March 1998

We present solitary-wave solutions of two and three coupled nonlinear @ehes equations when the
waves propagate in the normal and anomalous group-velocity dispersion regions. A wave of the form
sechf §—§ is found, which, together with two known waves of the forms tgsieché and seché, are shown
to form a new generation of complementary waves. The implication of this wave set and its applications to
coupled solitary-wave propagation is discus4&1.063-651X98)07411-X

PACS numbep): 42.65.Tg, 42.81.Dp, 03.40.Kf

I. INTRODUCTION propagate in the normal GVD region. The pair consists of a
solitary wave of the form seéfué)—2. Indeed, we shall
Because of its many useful applications in nonlinear op-show that the set of three solitary waves of the forms
tics [1], the problem of two interacting optical waves that

satisfy two coupled nonlinear Schtinger (NLS) equations 01(§)=sechi(af)-3,

and that are shape-preservigaplitary) has been extensively

studied for many years. The well-known cases of interaction g2(é) =tani aé)sechiaf),

between two solitary waves atg two bright solitary waves

that propagate in the anomalous group-velocity dispersion g3(é)=secti(af) 2

(GVD) region[2], (ii) one bright solitary wave in the anoma-
lous GVD region that interacts with a dark solitary wave in
the normal GVD regioni3], (iii) one bright solitary wave in
the normal GVD region that interacts with a dark solitary
wave in the anomalous GVD regidd], and (iv) two dark
solitary waves that propagate in the normal GVD redidh
The simplest bright and dark solitary waves have the form
sech@é) and tanh&é), respectively, wherer is some con-
stant and¢=t—z/v, with t, z, andv denoting the time, dis-
placement, and velocity. A solitary wave pair that consists o
a product type of the forms tanif)sech@é) and sech(ag)
was given by Tratnik and Sip¢6], that of the forms
tanh@é)sech Y(aé) and sech(af), wheres is between 1 and
2, was given by Silberberg and Bargd], and that where
both waves are asymmetric but which reduce under certai
limits to the forms tanh{;&)sech@,é) and secht, &) was
given by Christodoulides and Josep8)|. Solitary waves, .
each of which is a superposition of bright and dark solitary Il. N COUPLED NONLINEAR SCHRO DINGER
waves, were given by the authi®], and many periodic soli- EQUATIONS

tary waves, which are expressed in terms of Jacobian elliptic \wnen two optical waves of different frequencies copropa-

functions or their products, were given by several author%ate in a medium and interact nonlinearly through the me-

[9-12. ) , _dium, the propagation equation for slowly varying complex
Let us denote the simplest forms of dark and bright SO“'ampIitudecz)m(z t) of the mth electric field is[1]

tary waves by

can be appropriately considered as the second generation of
solitary wave set. This generation consists of the three mem-
bers of Eq.(2) (which we shall call red, white, and blue
solitary waves for easy reference, as opposed to dark and
bright solitary waves of the first generatiprand we show
ghat it is one of the simplest sets of “complementary”
solitary-wave solutions, i.e., a solution that consists of three
differentwave forms, for three coupled NLS equations. Sub-
pets of it appear as solutions for two coupled NLS equations:
the white-blue or §,,9;) combination given by Tratnik and
Sipe[6], and the red-white org;,g,) combination that we
present in this paper. The significance of this wave form and
the realization that it is one of the solitary waves for a solu-
Hon of three coupled NLS equations will be further amplified
in the following sections.

f1(6) =tani(ag) bt a2 ot 2 b
and +Ym(fmm|¢m|2+2fmm’|¢m’|2)¢m:01
f2(&)=secttiad), ()
m=1,2, m'#m, 3
respectively. We refer to Eql) as the first generation of
solitary wave set. where 81n=1gm, vgm iS the group velocity,3,y, is the

In this paper, we present a number of coupled solitarygroup-velocity dispersioiGVD) coefficient, a,, is the loss
waves for two and three coupled NLS equations that propacoefficient, y,, is the nonlinear coefficient, anfi,,,v is the
gate in the normal and in the anomalous GVD regions. Firsbverlap integral, and where the subscriptziandt denote
we present a solitary wave pair for two coupled waves thatlerivatives with respect tbandt as opposed to the subscript
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m for different components. The medium is said to exhibit N N
normal dispersion if3,>0, anomalous dispersion #,<0. | pmzt Gt Km@m+ Pl > |#51% | bt Um| > &7
If the nonlinear coupling is between two polarization =1 =1

componentsg,(z,t), m=1,2, of a wave at some central X ¢*=0, m=1,..N (5)
frequency, the propagation equations are mo e

3 ) wherep's andqg's are dimensionless parameters that we as-
2 i

o . .
i bti _ P2 T ot 24 2 sume satisfy the relatiop,+0gn=¢, e=+1 or —1. A
Pt Budy 2 1 2 1t @1l pleal) closely related set of coupled equations is

X 1+t pre” 24P =0,

N
) (4) [ mzt mut Pm Z |¢j|2) ¥m

. . ,82 |l 2 ’ j=1

'¢2z+|ﬂ12¢2t_7 ¢2tt+7 b2+ Y[ (| 2|+ plpal?) N

+ 0| 2, lﬂfezmz) Ype 2m*=0, m=1..N
=1

X o+ bk pie?2F7]=0,

(6)
where A 8= B1,— B15 is the wave-vector mismatch due to,

for example, the birefringence of the medium through whichwhich can be transformed into E¢h) with the substitutions

the wave propagates, and the parametesid g satisfyp .= ¢.exp(~ix,2). We first search for the stationary-wave
+qg=1. For a medium such as an optical fiber with a rela-sglution of the form

tively large birefringence, the wave propagation equations
can be approximated by bm(Z,1) =Xn(D) expiQ2), 7)

. . B2 o 2 2 where(} is a real constant, and,(t) are real functions of
111 Budn 5 bt 5 dot N[ ¢al"+B[2]") only. Equations(5) reduce to the following, which we call
the associated dynamical coupled nonlinear Sdinger

X ¢$1=0, equations:
. . B2 o 2 2 . N 5
Loyt Braba— 5 baut o bot Y(| 2] *+ Bl s|?) Xm—AmXmt e > X |Xn=0, m=1,.N, (8
=
X¢2:0,

where A= Q) —k,, X denotesdx/dt, ande=+1 or —1.
whereB can vary between 2/3 and 2, and these equations aI%ecause Eqg5) and(6) are invariant under a Galilean trans-
similar to Egs.(3) ' ormation, traveling waves can be constructed from &q.

If the two coupled waves or components propagate wittPy replacingém(z,t) by

approximately the same group velocity thei 81,,¢m: terms

in Egs. (3) and (4) can be eliminated by the transformation dm(z,t=2lv)exfdi(t—2/2v)/(2v)], 9
t—t—2z/v, and Eqgs.(3) and (4) become coupled nonlinear _ .
Schralinger-like equations. wherev is the velocity of the waves.

The two sets of equatior®) and (4) are mathematically The casee=+1, N=1 for Eq. (5) [or Eq. (6)] can be
similar, and their generalization t(>2) coupled waves or identified with the standard NLS equation for waves that
components can be written down. Analytic solutions, mainlyPropagate in the anomalous GVD region and one that gives
in the form of coupled solitary waves, are possible only forthe bright solitary wave; and the case- —1, N=1 can be
some special cases. The analytic solitary waves we shafieen to be equivalent to the standard equation for waves that
present in this paper fod=2 and 3 are also only applicable Propagate in the normal GVD region and one that gives the
to some special cases. However, they could provide som@ark solitary wave. FON>1, it should be noted that Eq&)
useful guides for studies of two or three nonlinearly couplechave eithee=+1 ore=—1 forall N equations, i.e., where
waves that propagate under conditions that are not too difall N coupled waves propagate either in the anomaleus (
ferent from the physical conditions that have been assumed +1) GVD region or in the normalg(= —1) GVD region,
to permit these solitary waves. not any “mixed” cases where one or more of the equations

Instead of writing down the gener&l coupled wave haves=+1 and—1. To eliminate the permutation symme-
equations, we begin with the following two equivalent sets,try, we assume that the equations(8 have been arranged
Egs.(5) and(6) below, of N coupled wave equations, which according toA;<A,<---<Ay.
can be seen to reduce, fdr=2, to Eqgs.(3) (with specific

value_s forf’s) and (4), respect_ively. ConsideN cqupled lll. TWO COUPLED NLS EQUATIONS
equations for the slowly varying complex amplitudes or
components¢,(z,t), m=1,2,...N of the electric fields We first present nine perioditor elliptic) solutions in

propagating along the axis that satisfy the following terms of Jacobian elliptic functions of modulksor N=2,
coupled nonlinear Schdinger-like equations: e=+1 of Egs.(8). Seven of these that do not include those
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with the same wave forms were given ear|i¢2], but some
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TABLE |. Solutions of Eqs(8) for N=2, e=+1.

of them were not expressed in the most simplified form in

Ref. [12]. We present the complete set below, which we

@ ) )

number(l) to (IX); note in particular solutiondll) and (V)

: . s f f

and solutiongVIIl ) and(IX), which are expressed in simpler xl glfl glfz glgz
forms more suitable for comparisons with our other results? A2>2A -0 AzfA -0 A2g34A -0
later. The modulusk of the elliptic functions given below is ", AZ_Al Al_ 2 AZ_ 1
in the range 8<k?<1 unless otherwise specified. a 27 1 1,

Solution (1): Cs Ci=Aq Ci+Cy=2A; Ci=C5=6A;

Ci=2A,— A,
X1=Clsr(at,k), X2=C20n(at,k),
a?=(A,—A)IK?, Ci=A,+a?—2a°K?,
S(A3—A]+2A;—3A]
Ci=A,+a?, A>A,.
Solution(ll):
e 2V5(AF-AD)

X1=C1ksr‘(at,k), X2=C2dn(01t,k),

a?=A,—A;, Ci=A+a?k?—2a?,
Ci=—A,—a’k?, A>A.
Solution (I11):
X;=Cicn(at,k), X,=Cycn(at,k),
a?=A11(2k?=1), C2+C,2=2a%k?, A;=A,,
A;>0 for k?>1/2, A;<0 for k?<1/2.
Solution(1V):
x1=Cy(k/k")en(at,k), X,=Cyo(1K")dn(at,k),
a?=(A,—A)IK'2, C2=—A,—a?k?+2a?,
Ci=A,—a’k?, A>A,.
Solution (V):
x;=Cdn(at,k), x,=C,dn(at k),
a?=A11(2-K?), C3+C5=2a% A=A,>0.
Solution (VI):

X1=Cksn(at,k)cn(at,k), X,=Ccn(at,k)dn(at,k),
a2=(A2—A1)/3, k2=(4A2—A1)/[5(A2—A1)],
C2=2(4A,— A5, A,=4A,.

Solution (VII):

x1=Csn(at,k)dn(at,k), x,=Ccn(at,k)dn(at,k),

a®=(4A,—A)I15, K*=5(A—A)I[(4A—A1)],
C2=2(4A,— A5, A<A,<4A,.

Solution (VI ):

x,=Ck2snat,k)cn(at,k), X,=C[1G, —k2srfat,k)],

\/%(Ag—Ai) +2A,—3A;

3 V3(AZ-AD+2A,—3A;

5 V2(A—A;) :
3G, = ;_ % (%) 1/2}_1,
A=4A,.
Solution (IX):

x;=Cksnat,k)dn(at,k), x,=C[:G.,—k?srf(at,k)],

[5, 72 p2 _
2= /A(Ag—Ai) 2 3(A2— A +2A,—3A;
15 l s

2\5(A3-A)

1 1/5(A,—A\Y?
— /8 1 =t - —= =
C= 5(A1+A2), 3G+ 2+ 2 (3(A2+A1) ’
8A/T<A,<4A,.

It should be noted that whenever the two solitary waves
are of the same form, it necessarily requires that the corre-
spondingA’s in Egs.(8) must be equal. This is one reason
that the use of different or complementary wave forms is
sometimes advantageous or necessary as it permits more
freedom in the choice of parameters compared to the use of
the same wave form. These nine solutions reduce to only
three distinct solutions in terms ¢1) and (2) whenk?®=1,
and they are given in Table I. Solutid8) of Table I, which
gives the solitary wave paigg,gs) involving a subset of the
second generation of solitary wave set was first given by
Tratnik and Sipd6].

Next, we present below five elliptic solutions fof=2,
e=—1, of Egs.(8), which we numbe(i)—(v). Both A; and
A, are assumed to beO.
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TABLE Il. Solutions of Egs.(8) for N=2, e=—1.

@ 2 ()

X1 C,fy C.f, Ci0:
X2 C,fy C,f, C.0;
As  A;=A,<0 A,<0, A,>A A;=8A,<0
a? —A2 A,— A —A,/8
Cs Ci+Ci=-A, Ci=-A, C2=C3=—09A,/4
Ci=—2A,+A,
Solution (i):

X1=Cssnat,k), X,=Cysn at,k),
a?=—A/(1+Kk?), C2+C3=2a%k>% A;=A,.
Solution (ii):

X1=Cisnat,k), Xx,=Csycn(at,k),
a?=(A,—A))/K?, C2=—A,—a?+2a%?,
Ci=—A,—a? A>A;.

Solution (iii ):

X1=Ciksnlat,k), x,=C,dn(at,k),
a?=A,—A;, Ci=-A,—a’k?+2a?
Ci=—A,—a?k?, A>A,.

Solution (iv):

x;=C[3G_—k?srf(at,k)], x,=Ck?sn at,k)cn(at,k),
a?=15(V3(A[— A +2A,~3A,),
2V3(AT-A))

TABLE lll. Solutions of Egs.(8) in f's of Eq. (1) for N=3, ¢
=+1.

@ ) ©)

X;  Cyfy Cif, Cif

Xp  Cyfy Cof, Caf,

Xz Csf Csf, Csf,

As A=A =A>0 A=A3>A>0 A;=A,=A3>0
a®  Ay—A; A,— A A,

Cs C2+Ci=A; C2=A, C2+C3+C3=2A,

C3=2A;—A, C5+C3=2A,—A,

1 [3 1 (3(A1+A2)
3

3272 l5A A

1/2} -1

(8ITA,<A;<A,.
Solution (v):
X;=C[1G_—k?srf(at,k)], X,=Cksn at,k)dn(at,k),

5(A2_ A2 _
=BT AY, k= A2 TR
15 , ,

213 (A2-AY)

12

o 1 1 1(5(AAy
C=V-s5(AtAy), 3G-=5-3 3ATA,)
AR, <A< (8IT)A,.

These five solutions reduce to three distinct solutions in
terms of Egs(1) and(2) whenk?=1, and they are given in
Table Il. In particular, solutioii3) of Table Il gives a solitary
wave pair §1,9,) that involves a wave forng,, and that,
together with solution (3) of Table | suggests that
(91,92,93) may be a triplet of complementary waves that
should be considered together. The periodic form of this
wave @;) is 3G_—k2sr(at,k). Let us first present the
solutions of Eqs(8) for N=3 in the next section.

k?=
’ IV. SOLUTIONS OF COUPLED NLS EQUATIONS
V3(AT-AD) +2A,-3A, SOMEDNSEQ
3 %(Ai—A§)+2A1—3A2 In terms of Eqgs.(1) anq (2, .the aperiodic solutions of
=—_ , Egs. (8) for N=3 are given in Tables Il and IV for
5 V2(Ax—Ay) e=+1, and in Tables V and VI fog = — 1. In particular, the
TABLE IV. Solutions of Egs.(8) in g's of Eq. (2) for N=3, e=+1.
4 ® 6)
X1 Clg]_ Cng C192
Xo ngg ngz ngg
X3 Cs03 Cs03 Cs03
A's A;=4A,—3A,, A,>A;>0 Az=4A;=4A,>0 As=A,=4A,>0
CYZ AZ_A]_ Al Al
Cs C2=9A,/4 C2+C3=C2=6A, C2=C3+C3=6A,

Ci= 3(2A—AY)
C3=3(8A,—7A,)/4
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TABLE V. Solutions of Eqs(8) in f's of Eqg. (1) for N=3, e=—1.

@

2 3

X1
X2

A's

Cs

lel
C2f1
C3f1
Ar=A,=A<0

—A/2
Ci+Co+Ci=—A;

lel lel

CZfl CZfZ

C3f2 C3f2

A;=A,<0 A,=A3<0
A3>Al>2A3 A2>Al>2A2
A37A1 A27A1
C2+Ci=—A, Ci=-A,
Ci=—2Az+A,; C3+C3=—2A,+A,

only complementary solutions, i.e., solutions that consist ofegion, i.e., the bright-dark solitary wave pair is a solution
different wave forms, are solution(4) of Table IV for
e=+1 and solution(6) of Table VI fore=—1. These two
solutions can be conveniently expressed together as

C3=3e(8A,—TA)I4, a’=A,— A,

X3=C303,

C3=3c(2A,—A,),

X1=C101, X2=Cy0>,
where
C2=9¢A,/4,
A3=4A2_3A1,
A2>Al>0 fOI‘ 8:+1,
We thus come to

(10

for N=2, fore=+1 or —1. Thus to experimentally realize
our solitary wave paird;,g9,) that consists of a wave form
0, the pair needs to propagate in the normal GVD region,
but it can also propagate in the anomalous GVD region if the
pair is coupled togs. Similarly, the solitary wave pair
(9,,93) found by Tratnik and Sipg6] that can propagate in
the anomalous GVD region can be made to propagate in the
normal GVD region if the pair is coupled ;.

Tables IV and VI show that foN=3 two other combi-
nations involving ,,9,) are possible fore=—1:
(91,92,0,) and ©41,91,9,); and two other combinations in-
volving (g,,03) are possible foe=+1: (9,,0,,93) and
(9-,93,03). That means that to send solitary waves of the
second generation through a medium, the red solitary wave
(9,) is always needed as one of the coupled waves if the
waves are to travel in the normal GVD region, the blue soli-
tary wave @3) is always needed as one of the coupled waves

the important realization thatif the waves are to travel in the anomalous GVD region, and
(91,92.,93) is a solution forN=3, e=+1 or —1. It means
that even though the red solitary wawg J cannot propagate coupled waves in either region.
in the anomalous GVD region with another coupled wave As in the case foN=2, periodic or elliptic solutions can
(for N=2), and that the blue solitary wavey{) cannot
propagate in the normal GVD region with another coupledhere that reduce to Eq10) whenk®=1.
wave (for N=2), either of themcan propagate in the normal
or the anomalous GVD region if it is coupled witivo other
waves of different colors.
We may recall a similar situation when we go from
N=1 to N=2 for Eq. (5), where the bright solitary wave is
a solution forN=1, e=+1 and note=—1, and that the
dark solitary wave is a solution fdd=1, e=—1 and not
e=+1, but where the coupled bright and dark solitary wave
pair can propagate in either the normal or anomalous GVDvhere

the white solitary waveds) is always needed as one of the

be found for the cashl=3. We present three such solutions
Solution(1):
X1=Cia[ $G_—Kk?srf(at,k)],
Xo=Cyrak sn at)cn(at,k)],

X3=Czak cn(at)dn(at,k)],

TABLE VI. Solutions of Egs.(8) in g's of Eq. (2) for N=3, e=—1.

4

) (6)

X1
X2
X3
A's

C10:
C,0:

Cs92
A]_: A2: 8A3/7< O

_A1/8
Ci+C3=C5=—9A,/4

Ci10: Ci01

Cz0; C.9;

Cs9> Cs03

A,=A3;=T7A,/8<0 Az;=4A,—3A;, A;<0
A,>A=8A,/7

—A/8 A—A,

C2=C3+C3=-9A,/4 C2=-9A,/4

C3=3(-2A,+A,)
C3=3(—8A,+7A,)/4
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G.=1+k?>*+(1-k>+kH2 an additional freedom of choice that can be used to affect the
- shapes and amplitudes of the waves.
a?=3(A3—Ay), Ki=3i[—(y—2)+2(y*—y-2)¥7, Solution(11):
y=(2Az+A,—3A)/(As—A,), X;=Cia[1G_—k?srt(at,k)],
C2= e[ (4Ag—Ar)/(Ag— Ay) — BK2J/[1GZ —2G_K2+ k4], Xz=Caaksniat)cn(at k),
ng(kz—%Gsz)Ci-i-Gs X3=C3a[%G+—k25r12(a't,k)],
where

C3=k*(CI+C)).
2= K(Cr Gy G.=1+k*=(1-k*+kH¥2,
This solution is applicable in the region<2y<3, 0<k?

2_ 2
<1, or A;=4A,—3A,, andA,>A,;. Fore=+1, A;>0, @"= (A= Al (4+K"=2G),
and fore=—1, A,,A;<0; and it becomes Eq10) when k2=(2y%2—2)/[ y?— 1+ (3y2—3)17],
Az=4A,— 3A, for which y=3 andk?=1. Compared to the
aperiodic solutions, periodic solitary-wave solutions permit y=(A3— A/ (A3—2A,+A,),

» &{6A;G, (G —3Kk*)—3A[—2G,*+(2G, —3k*)(4+k*)]}
Ci= [2k%(G . —G )(A—AJ)] ’

Ci=—¢[6+(k*—2G_)C3)/(k*-2G,),

C3=k?(C2+C)).

This solution is applicable in the region<ly<2, 0<k®  where
<1, or A3=4A,—3A,, andA,>A,. Fore=+1, A;>0,
and fore=—1, A;,A,,A;<0. It becomes Eq(10) when
Az=4A,—3A, for which y=2, andk?®=1.

Solution(l11):

2_ _ 2_
X,=Cyal 1G_ —kZsrf(at k)], @ =(Ag= A1+ 4k 2G),

G.=1+k*x(1-k*+kH?

X2=C2ak Sr(at)dn(at,k), k2:[,y2_1_'_(3,}/2_3)1/2]/(2,)/2_2)'

1
_ - L2
X3=Cga| 3 G, —K’si(at,k) |, y=(Ag— A/ (Ag—2A,+A,),

Cz_s{6A26+(G+—3)—3A1[—ZG+2+(2G+—3)(1+4k2)]}
e [2(G1—G_)(A—A1)] '

C3=—e[6+(1-3G_)CiII(1-3G,),

Ci=c3+Ci.

This solution is applicable in the regior=2, 1/2<k®<1,0r  wave, and the solitary wavéG, —k?sré(at,k) cannot
A;<A,<Az<4A,—3A,. Fore=+1, A;>0, and fore= propagate in the normal GVD region with another coupled
—1, A;,A;,A3<0. It becomes EQq(10) when A;=4A, wave, either of thentan propagate in the normadr the

—3A, for which y=2, andk?®=1. anomalous GVD region if it is coupled with two other suit-
These three solutions are examples that show that evesble solitary waves.

though the solitary wavgG_ —k?srf(at,k) cannot propa- The periodic solutions are of increasing interest especially
gate in the anomalous GVD region with another coupledafter a recent experimental observation of the evolution of an
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arbitrarily shaped input optical pulse train to the shape- #?=A/[2(G,—-G_)],

F. T. HIOE
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G.=1+k?=(1-k>+k*H?

preserving Jacobian elliptic pulse-train corresponding to the

Maxwell-Bloch equation$13].

V. OTHER NONLINEAR EQUATIONS

It seems natural to ask whether the waves_
—Kk?srf(at,k) or its aperiodic form sedfat)—3 when k2

which, for k?=1, reduces to

x=3Aegs, o’=A/4. (17b

=1, appears as a solution of other simpler nonlinearly
coupled dy_namical equaj[ions._ The answer is affirmative, anfgte that solutions(16) and (17) for the single nonlinear
we shall give the following simple examples, even thoughequation(15) are exclusive of each other because of the con-

the equations may not be of any great physical interest.

dition thatA is <0 or >0, but the two coupled equatiofikl)

Xt e(X1+ X)) Xm=ApXm, mM=1,2,

ande=+1 or —1. (11

the required condition being simpl§;# A, (we have as-
sumedA; <A, in our solutions(13) and (14) but the order
can be clearly interchanggdThis is analogous to the situa-
tion we found when we considered the solutions from

These coupled equations may be considered as the associafég 1 to N=2 to N=3 for Egs.(8), which we discussed
dynamical equations of coupled equations of two interactingollowing Eq. (10). Notice that the red-bluegg,gs) combi-

complex field componentg,(z,t) and ¢»(z,t) that satisfy

the following coupled equations:

i mzt Pmiet KmPmT 8(| ¢1| + | d)2|)¢m20, m=1,2,
(12

as the transformation&) and(9) can be shown to apply to

Egs. (11) and (12 also. A solution of Eq.(11), for A,
>Aq, is

X;=eCa?’[1G_—k?srt(at k)],
X,=eCra’[1G, —k?srt(at k)],

a?= (A= ADI[2(G. ~G )],

G.=1+k2=(1-k*+kH12 13
Ci=—6A[/(A,—A;), C,=6A,/(A,—A;), 0<k’<1.
The aperiodic solution of Eq13) (for k?=1) is

X1=—83A101, Xo=83Ax03,
a’=(A,—A))/4. 19
The corresponding single nonlinear equation is
X+ ex?=Ax. (15)
For A<O0, a solution of Eq(15) is

Xx=6ea’[1G_—Kk?srf(at)],

(16a

a?=—A[2(G,—G_)], G.r=1+k2+(1-k?>+k"H1?

which, fork?=1, reduces to

x=—ge3Ag;, a’=-Al4 (16b
For A>0, a solution of Eq(15) is
x=6ea’[1G, —k?srt(at)], (17a

nation given by Eqgs(14) is not found for Eqs(8) for N
=2.

VI. SUMMARY

In summary, we have presented solitary waves for two
and three coupled NLS equations, and in particular, solitary
waves[(i)—(v) in Sec. lll and solution(3) of Table II] for
N=2 that can propagate in the normal GVD region and,
when coupled with a third solitary wave, can propagate in
either the normal or the anomalous GVD regidty. (10),
solutions (1)—(Ill) in Sec. IV, and solution$4) and (6) in
Tables IV and V]. The waveiG_ —k?sr?(at,k) or its ape-
riodic form secR(at)—2 is shown to be a solution of other
nonlinear equationgSec. V) and is thus not uncommon.
These solitary waves are stable for + 1, at least linearly
stable, as can be shown by following the stability analysis
given by Infeld [14] for similar periodic and aperiodic
coupled waves given by Grobe and the auflid]. The spe-
cial feature of this result is that not only a wave fogn of
solitary wave has been found, but also the introduction of the
idea that (i) a second generation of solitary waves
(91,92,93) which form the simplest set of three different or
complementary waves, may, in addition to the two solitary
waves (4,f,) of the first generation, become a useful and
practical tool, andii) a third coupled wave may indeed be
helpful for extending the region of applicability for propaga-
tion of a pair of solitary waves. lde@) may be used for
extending the variational approa¢h6] and may stimulate
systematic searches for the next generation of solitary waves.
Idea (ii) gives a concrete example that extended the very
successful idea of using two optical waves instead of one for
better control of wave propagatigt5,17,18 to using three
optical waves instead of two.
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