St. John Fisher College Fisher Digital Publications

Undergraduate External Publications

2-1-2014

Asymptotic Spectral Properties of the Schrödinger Operator With Thue-Morse Potential

William Clark Ohio University

Rachael Kline St. John Fisher College, rmk09830@sjfc.edu

Michaela Stone Louisiana State University

Follow this and additional works at: https://fisherpub.sjfc.edu/undergraduate_ext_pub

Part of the Mathematics Commons How has open access to Fisher Digital Publications benefited you?

Publication Information

Clark, William; Kline, Rachael; and Stone, Michaela, "Asymptotic Spectral Properties of the Schrödinger Operator With Thue-Morse Potential" (2014). *Undergraduate External Publications.* Paper 4. https://fisherpub.sjfc.edu/undergraduate_ext_pub/4

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at https://fisherpub.sjfc.edu/undergraduate_ext_pub/4 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact fisherpub@sjfc.edu.

Asymptotic Spectral Properties of the Schrödinger Operator With Thue-Morse Potential

Abstract

The open problem

Study the Thue-Morse trace map; in particular, find the asymptotics of the Hausdorff dimension of the spectrum as the coupling constant tends to zero or infinity.

Our research

• We studied the dynamics of the Thue-Morse trace map.

• We developed MATLAB code to help approximate the box-counting dimension, thickness, and Hausdorff measure of the Schrödinger operator with Thue-Morse potential.

• We analysed the resulting data, which confirmed conjectures about the asymptotic behavior of the fractal dimensions of the operator. Asymptotic Spectral Properties of the Schrödinger Operator with Thue-

Disciplines

Mathematics

Comments

Presented at the Nebraska Conference for Undergraduate Women in Mathematics on February 1, 2014.

The open problem

Study the Thue-Morse trace map; in particular, find the asymptotics of the Hausdorff dimension of the spectrum as the coupling constant tends to zero or infinity.

Our research

• We studied the dynamics of the Thue-Morse trace map. • We developed MATLAB code to help approximate the box-counting dimension, thickness, and Hausdorff measure of the Schrödinger operator with Thue-Morse potential. • We analysed the resulting data, which confirmed conjectures about the asymptotic behavior of the fractal dimensions of the operator.

Historical background

1984

Discovery of the icosahedral phase of the AIMn alloy was interpreted as a quasiperiodic crystal, giving rise to new questions about tilings.

Figure : Aperiodic quasicrystalline diffraction pattern.

Note that while several of the subpatterns are repeated, there is no regular lattice structure.

Why do we care?

Understanding the mathematics behind aperiodic tilings allows us to model the behavior of electrons traveling through quasicrystals.

Properties:

- Directionally varying electrical conductivity
- Poor heat conductivity

Uses:

- Surgical instruments
- LED lights
- Non-stick cookware

Modeling quasicrystals

A possible construction of these structures is generated using "inflation rules" that utilize a finite alphabet to represent the tiling. A substitution, σ , assigns a finite string of letters to each letter in the alphabet.

Definition

Letter - a single representative of the alphabet (a, b, c, ...)*Word* - a collection of letters (*ab*, *ba*, *abc*, . . .)

Asymptotic Spectral Properties of the Schrödinger Operator With Thue-Morse Potential

William Clark - Ohio University • Rachael Kline - St. John Fisher College • Michaela Stone - Louisiana State University

Advisors: May Mei and Andrew Zemke

The Thue-Morse sequence

One specific sequence, the Thue-Morse sequence, uses two letters, a and b with the substitutions $\sigma(a) = ab, \sigma(b) = ba$. We denote the sequence as \underline{u} where \underline{u}_n is the n^{th} letter in the sequence. Suppose $u_0 = a$, using the substitution we obtain the sequence:

u = abbabaabbaababba...

where the sequence is the limit of the substitutions as the length of the sequence goes to infinity.

The 1D discrete Schrödinger operator with a Thue-Morse potential defined on the discrete 1-D lattice $\mathbb Z$ where V is the coupling constant, is

 $H_V\psi(n) = \psi(n+1) + V(n)\psi(n) + \psi(n-1)$

where V(n) = V(-n-1) and V(n) = V whenever the n^{th} letter of \underline{u} is a and V(n) = -V otherwise (by convention $u_0 = a$).

Understanding the trace map

The trace map is defined by

 $f(x, v) = (x^2 - 2 - v, v(v + 4 - x^2))$

with the initial conditions $v_1 = 4V^2$, and $x_1 = E^2 - V^2 - 2$.

Definition

A point (x, v) is called *unstable* if there is a neighborhood \mathcal{U} of (x, v) and an integer n_0 such that for all (x_1, v_1) in \mathscr{U} and all $N \ge n_0$, the iterated $(x_N, v_N) = f^N(x_1, v_1)$ satisfies $|x_N| > 2$.

Figure : Stability domains in the (x, v)-plane for the trace map. $D_0, \Sigma_{+,-}$ and $\Sigma_{-,-}$ are unstable regions, $\Sigma_{-,+}$ is a not unstable region and $\Sigma_{+,+}$ contains both not unstable and unstable points. Not unstable points are represented by the black dots.

Proposition

E, energy, values corresponding to unstable points are out of the spectrum of the operator (Bellissard 1990).

Figure : Plot of not unstable points in the (E, V)-plane instead of the (x, v)-plane in the previous figure.

Fractal Dimension

Since the spectrum is a Cantor set with measure zero, we wish to analyse the fractal dimension of the spectrum for different coupling constants, V. The notions of fractal dimension we will be using include:

- Box-counting dimension
- Thickness
- Hausdorff dimension

In an arbitrary set, F, we have the following relation:

$$\frac{\log 2}{\log\left(2+\frac{1}{\tau}\right)} \leq \dim_{H}(F) \leq \dim_{B}(F)$$

where τ is the thickness, dim_H(F) is the Hausdorff dimension, $\dim_B(F)$ is box-counting dimension (Falconer 2005, Palis et al. 1993).

Box-counting Dimension

The Box-counting dimension of a set F is:

$$\dim_H F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}$$

This equation is assuming that the measure of the set F obeys the power law:

$$N_{\delta}(F) \sim c \delta^{-s}$$
 $\log(N_{\delta}) \sim \log(c) - s \log(\delta)$

Figure : This is a log-log plot of δ versus N_{δ} with a coupling constant of 0.3 and with the resolution checking 2^{17} points under 10,000 iterations. The results are partitioned into two groups so the data is being fitted with two best-fit lines for the upper and lower estimates on the box-counting dimension.

Definition

that

The thickness of K at u is defined as $\tau(K, u) = \ell(C)/\ell(U)$. The *thickness* of K, denoted by $\tau(K)$, is the infimum over these $\tau(K, u)$ for all boundary points u of bounded gaps.

We cannot compute this directly as a lower bound for the Hausdorff dimension. We plug the calculation of thickness into the function:

Hausdorff Dimension

Definition

The Hausdorff measure of a set *F* of dimension *s*, denoted by $\mathscr{H}^{s}(F)$, is:

follows:

Definition

Thickness

Another type of fractal dimension we will consider is the thickness of a Cantor set.

Let $K \subset \mathbb{R}$. A gap of K is a connected component $\mathbb{R} \setminus K$; a bounded gap is a bounded connected component of $\mathbb{R} \setminus K$. Let U be any bounded gap and u be a boundary point of U, so $u \in K$. Let C be the *bridge* of K at u, i.e. the maximal interval in \mathbb{R} such

- u is a boundary point of C, - C contains no point of a gap U' whose length $\ell(U')$ is at least the length of U.

Definition

Figure : A plot of V versus $f(\tau)$ where $f(\tau) = \log 2 / \log (2 + (1/\tau))$ which is a lower bound on the Hausdorff dimension.

Before the Hausdorff dimension can be defined, the Hausdorff measure of a set must be defined:

$$\mathscr{C}^{s}(F) = \lim_{\delta \to 0} \left\{ \inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\} \text{ is a } \delta - \text{cover of } F \right\} \right\}$$

With this in mind, we can define the Hausdorff dimension as

- The Hausdorff dimension of a set F, denoted by $\dim_H(F)$, is:
- $\dim_{H}(F) = \inf\{s \ge 0 : \mathscr{H}^{s}(F) = 0\} = \sup\{s : \mathscr{H}^{s}(F) = \infty\}$
- Specifically, $\dim_H(F)$ is the value of s where the Hausdorff measure 'jumps' from ∞ to 0.
- We computed the Hausdorff measure of the spectrum, using both the trace map and also via Laplacian matrix truncation. In both cases the estimated dimension was between 0.4 and 0.8.

