Wave Equation on Spherically Symmetric Lorentzian Metrics

Ashfaque H. Bokhari
King Fahd University of Petroleum and Minerals

Ahmad Y. Al-Dweik
King Fahd University of Petroleum and Minerals

A. H. Kara
University of the Witwatersrand

Munawar Karim
Saint John Fisher College, mkarim@sjfc.edu

Follow this and additional works at: https://fisherpub.sjfc.edu/physics_facpub

Part of the Physics Commons

How has open access to Fisher Digital Publications benefited you?

Publication Information

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at https://fisherpub.sjfc.edu/physics_facpub/5 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact fisherpub@sjfc.edu.
Wave Equation on Spherically Symmetric Lorentzian Metrics

Abstract
Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of θ and ϕ are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.

Keywords
Partial-Differential Equations, Conservation-Laws, Noether, Separation, Variables

Disciplines
Physics

Comments

This article is available at Fisher Digital Publications: https://fisherpub.sjfc.edu/physics_facpub/5
Wave equation on spherically symmetric Lorentzian metrics

Ashfaque H. Bokhari,1, a) Ahmad Y. Al-Dweik,1 A. H. Kara,2 M. Karim,3 and F. D. Zaman1

1Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2School of Mathematics, University of the Witwatersrand, Johannesburg, South Africa
3Department of Physics, St. John Fisher College, Rochester, New York 14618, USA

(Received 21 July 2010; accepted 11 May 2011; published online 22 June 2011)

Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of \(\theta \) and \(\phi \) are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients. © 2011 American Institute of Physics. [doi:10.1063/1.3597232]

I. INTRODUCTION

As far as Lie point symmetries1,19,27,29 are concerned, they have important relationship between them and the conservation laws admitted by partial differential equations (pdes). It is for this that finding conservation laws associated with symmetries has been a topic of interest for many researchers (see, e.g., Refs. 6–18, 20, 24–26, 28 and 30). A systematic procedure of determining conservation laws (associated with variational symmetries) for systems of Euler-Lagrange equations is indeed the famous Noether theorem.15 Direct construction methods for multipliers and hence the conservation laws,32 Lagrangian approach for evolution equations23 and formula for relationship between symmetries and conservation laws, irrespective of the existence of a Lagrangian of the system8 have been investigated.

The nonlinear \((1 + 1)\) wave equation

\[
\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(f(u) \frac{\partial u}{\partial x} \right) = 0, \tag{1.1}
\]

describing waves in one dimension involving arbitrary velocity function arises when transmitting a signal on a transmission line with material properties that are changing along the line. Ames et al.33 obtained a complete group classification for its admitted point symmetries with respect to the wave speed function \(f(u) \) and constructed explicit invariant solutions in some particular cases. Extending their work, Bokhari et al. studied conservation laws of the nonlinear \((n + 1)\) wave equation

\[
\frac{\partial u}{\partial t} - \text{div}(f(u) \text{grad} u) = 0, \tag{1.2}
\]

involving an arbitrary function of the dependent variable.34 Since a full Lagrangian of this equation does not exist, a partial Lagrangian approach was used to find partial Noether operators for various choices of \(f(u) \) and a relationship between the partial Noether symmetry operators and the Lie symmetries of the equation was obtained.

Generally, nonlinearity in the pdes is introduced due to some “ad hoc” assumptions. An account of such work is available in Refs. 20–22. For example, symmetry classification for a number of wave equations in flat space is discussed in Ref. 5 and 33. In the present paper, we extend the earlier

a)Author to whom correspondence should be addressed. Electronic mail: ashfaque.bokhari1@fulbrightmail.org.
investigations3 by studying Noether symmetries of wave equation by coupling it with spherically symmetric spacetime metric.31 Since the spacetime metric is an explicit function of θ and ϕ, the equations determining Noether symmetries for this metric are solved up to explicit functions of these coordinates. In order to relate the problem to a realistic physical situation, we solve the equations in Friedman models representing exact expanding solutions of the Einstein field equations.31 The plan of the paper is as follows: In Sec. II, we discuss Noether symmetries of a $(3 + 1)$ wave equation on a spacetime metric admitting spherical symmetry. In Sec. III, we solve the wave equation to find Noether symmetries admitted by it and using a conformal transformation re-cast it into a constant coefficient equation. A brief discussion of results is given in the last section.

II. NOETHER SYMMETRIES OF A $(3 + 1)$ WAVE EQUATION ON SPHERICALLY SYMMETRIC LORENTZIAN METRICS

We begin by briefly defining Noether symmetries. Noether symmetries are associated with the differential equations possessing Lagrangians. These symmetries describe physical features of differential equations in terms of conservation laws they admit. Emmy Noether in 1918, proved a remarkable result that for systems arising from a variational principle, every conservation law of the system comes from a corresponding symmetry property. For example, invariance of a variational principle under time translation gives rise to the conservation of energy for the solutions of the differential equations in terms of conservation laws they admit. Emmy Noether in 1918, proved4 that for every infinitesimal transformation admitted by the action integral of a Lagrangian system a conservation law exists. Noether’s theorem provides an algorithm to construct conservation law for any admitted infinitesimal transformation. The importance of this result is that one can find all such transformations by examining the invariance properties of the Euler Lagrange equations.17 Given a Lagrangian $L(q^i, \dot{q}^i; t)$ of a differential equation, the Noether symmetry is obtained by the requirement that the action integral,

$$W = \int_{t_1}^{t_2} L(q^i, \dot{q}^i, t) dt,$$ \hfill (2.1)

remains invariant up to a gauge term $f(q^i, \dot{q}^i; t)$. Using the least action principle on (2.1) and simplifying terms up to the first order in ε, gives rise to the condition under which a Noether symmetry,

$$\left(\xi \frac{d}{dt} + \eta^k \frac{d}{dq^k} + \tilde{\eta}^{[i]} \frac{d}{dq^{[i]}} \right) L + L(q^k, \dot{q}^k, t) \frac{d\xi}{dt} = \frac{df}{dt}.$$ \hfill (2.2)

exists. In more convenient form Eq. (2.2) can be written as,

$$YL + LD_\xi \eta = D_\xi f,$$ \hfill (2.3)

where Y is the prolonged symmetry generator and D_t the total derivative.

In order to solve the wave equation via its Noether symmetries in a spherically symmetric metric, we choose the metric given by31

$$ds^2 = e^{\mu(r)} dr^2 - e^{\lambda(r)} d\theta^2 - e^{\phi(r)} d\phi^2 - e^{\mu(r)} \sin^2 \theta d\phi^2.$$ \hfill (2.4)

On this metric the wave equation is written, using the formula, $\Box_g u = \frac{\partial}{\partial x^\mu} (\sqrt{|g|} g^{\mu \nu} \frac{\partial u}{\partial x^\nu}) = 0$, where g^{ik} is the inverse and $| g |$ is the determinant of the metric (2.4). Using (2.4) and simplifying $\Box_g u = 0$, takes the form,

$$\frac{\partial}{\partial t} (e^{\mu - \frac{\lambda}{2}} \sin \theta \frac{\partial u}{\partial t} - \frac{\partial}{\partial r} (e^{\mu - \frac{\lambda}{2}} \sin \theta \frac{\partial u}{\partial r}) - \frac{\partial}{\partial \phi} (e^{\frac{\lambda}{2}} \sin \theta \frac{\partial u}{\partial \phi}) - \frac{\partial}{\partial \phi} (e^{\frac{\lambda}{2}} \sin \theta \frac{\partial u}{\partial \phi}) = 0.$$ \hfill (2.5)
The above equation yields a Lagrangian of the wave equation,

\[2L = e^{\mu - \frac{\nu}{2} + \frac{\lambda}{2} \sin \theta} - e^{\mu + \frac{\nu}{2} - \frac{\lambda}{2} \sin \theta} \left(\frac{\partial}{\partial t} \right)^2 - e^{\nu} \left(\frac{\partial}{\partial r} \right)^2 - e^{\lambda} \sin \theta \left(\frac{\partial}{\partial \theta} \right)^2 - e^{\nu} \sin \theta \left(\frac{\partial}{\partial \phi} \right)^2. \]

(2.6)

In order to investigate Noether symmetries for given \(\nu(t, r), \lambda(t, r) \) and \(\mu(t, r) \), we assume that the gauge term is independent of derivatives. Throughout the paper we use a convention in which derivatives of \(u \) with respect to \(t, r, \theta \) and \(\phi \) are respectively represented by \(u_1, u_2, u_3, \) and \(u_4 \).

In order that \(Y = \xi_1 \partial_t + \xi_2 \partial_r + \xi_3 \partial_\theta + \xi_4 \partial_\phi + \eta \partial_u \) is a Noether point symmetry generator of Eq. (2.5), it must satisfy Eq. (2.3) written explicitly as,

\[YL + L(\xi_1, t) + u_1 \xi_1, u + \xi_2, u + \xi_3, u + \xi_4, u + u_4 \xi_4, u) = B_1, t = u_1 B_1, u + B_2, r = u_2 B_2, u + B_3, u + B_4, u + u_4 B_4, u. \]

(2.7)

Substituting expression for \(L \) from (2.6), applying the operator \(Y \), re-arranging and separating the resulting equation in terms of derivatives of \(u \), the Eq. (2.7) yields an over determined linear system of equations:

\[\xi_1, u = 0, \]

(2.8)

\[\xi_2, u = 0, \]

(2.9)

\[\xi_3, u = 0, \]

(2.10)

\[\xi_4, u = 0, \]

(2.11)

\[e^\nu \xi_1, r - e^\nu \xi_2, r = 0, \]

(2.12)

\[e^\nu \xi_1, \theta - e^\nu \xi_3, r = 0, \]

(2.13)

\[e^\nu \xi_1, \phi - e^\nu \sin^2 \theta \xi_4, r = 0, \]

(2.14)

\[e^\nu \xi_2, \theta + e^\nu \xi_3, r = 0, \]

(2.15)

\[e^\nu \xi_2, \phi + e^\nu \sin^2 \theta \xi_4, r = 0, \]

(2.16)

\[\xi_3, \phi + \sin^2 \theta \xi_4, \theta = 0, \]

(2.17)

\[B_1, u - e^{\mu - \frac{\nu}{2} + \frac{\lambda}{2}} \sin \theta \eta_1, t = 0, \]

(2.18)

\[B_2, u + e^{\mu + \frac{\nu}{2} - \frac{\lambda}{2}} \sin \theta \eta_1, r = 0, \]

(2.19)

\[B_3, u + e^{\nu + \frac{\lambda}{2}} \eta_1, o \sin \theta = 0, \]

(2.20)

\[B_4, u + \frac{e^{\nu + \frac{\lambda}{2}} \eta_1, \phi}{\sin \theta} = 0, \]

(2.21)

\[B_1, t + B_2, r + B_3, o + B_4, \phi = 0, \]

(2.22)
The equivalent new equations are:

\((v_r + \lambda_r)\xi_1 + (v_r + \lambda_r)\xi_2 + 2\xi_{1,r} + 2\xi_{2,r} - 2\xi_{3,\theta} + 2\xi_{4,\phi} + 4\eta_{1,u}) \sin \theta + 2\xi_3 \cos \theta = 0, \hspace{1cm} (2.23)\)

\((v_r + \lambda_r)\xi_1 + (v_r + \lambda_r)\xi_2 + 2\xi_{1,r} + 2\xi_{2,r} + 2\xi_{3,\theta} - 2\xi_{4,\phi} + 4\eta_{1,u}) \sin \theta - 2\xi_3 \cos \theta = 0, \hspace{1cm} (2.24)\)

\((v_r - \lambda_r + 2\mu_r)\xi_1 + (v_r - \lambda_r + 2\mu_r)\xi_2 + 2\xi_{1,r} - 2\xi_{2,r} + 2\xi_{3,\theta} + 2\xi_{4,\phi} + 4\eta_{1,u}) \sin \theta + 2\xi_3 \cos \theta = 0, \hspace{1cm} (2.25)\)

\((v_r - \lambda_r - 2\mu_r)\xi_1 + (v_r - \lambda_r - 2\mu_r)\xi_2 + 2\xi_{1,r} - 2\xi_{2,r} - 2\xi_{3,\theta} - 2\xi_{4,\phi} - 4\eta_{1,u}) \sin \theta - 2\xi_3 \cos \theta = 0. \hspace{1cm} (2.26)\)

From the above set of Eqs. (2.23)-(2.26) can be transformed to an equivalent system via an invertible transformation,

\[\begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} (e_1) \\ (e_2) \\ (e_3) \\ (e_4) \end{pmatrix}, \hspace{1cm} (2.27)\]

The equivalent new equations are:

\(e_1 : 2\eta_{1,u} + 2\xi_{1,r} + \xi_{1,v} + \xi_{2,v} = 0,\)

\(e_2 : 2\eta_{1,u} + 2\xi_{2,r} + \xi_{1,\lambda_1} + \xi_{2,\lambda_r} = 0,\)

\(e_3 : 2\eta_{1,u} + 2\xi_{3,\theta} + \xi_{1,\mu_1} + \xi_{2,\mu_r} = 0,\)

\(e_4 : 2\eta_{1,u} + 2\xi_{4,\phi} + \xi_{1,\mu_1} + \xi_{2,\mu_r} + 2\xi_3 \cot \theta = 0.\)

From Eqs. (2.28)-(1), (2.8), and (2.9) we deduce that,

\(\eta_1 = \alpha(t, r, \theta, \phi)u + \beta(t, r, \theta, \phi). \hspace{1cm} (2.29)\)

By substituting \(\eta_1\) in Eqs. (2.28), it reduces to the following system:

\(2\alpha + 2\xi_{1,r} + \xi_{1,v} + \xi_{2,v} = 0,\)

\(2\alpha + 2\xi_{2,r} + \xi_{1,\lambda_1} + \xi_{2,\lambda_r} = 0,\)

\(2\alpha + 2\xi_{3,\theta} + \xi_{1,\mu_1} + \xi_{2,\mu_r} = 0,\)

\(2\alpha + 2\xi_{4,\phi} + \xi_{1,\mu_1} + \xi_{2,\mu_r} + 2\xi_3 \cot \theta = 0.\)

Moreover, from Eqs. (2.18)-(2.21) and (2.29) we obtain,

\[B_1 = \frac{1}{2} \sin \theta e^{u - \frac{3}{2}} (\alpha_r u^2 + 2\beta_r u) + f_1(t, r, \theta, \phi), \hspace{1cm} (2.31)\]

\[B_2 = -\frac{1}{2} \sin \theta e^{u + \frac{3}{2}} (\alpha_r u^2 + 2\beta_r u) + f_2(t, r, \theta, \phi), \hspace{1cm} (2.32)\]

\[B_3 = -\frac{1}{2} \sin \theta e^{u + \frac{3}{2}} (\alpha_\phi u^2 + 2\beta_\phi u) + f_3(t, r, \theta, \phi), \hspace{1cm} (2.33)\]

\[B_4 = -\frac{1}{2} \sin \theta e^{u + \frac{3}{2}} (\alpha_\phi u^2 + 2\beta_\phi u) + f_4(t, r, \theta, \phi). \hspace{1cm} (2.34)\]

Also from (2.22) and (2.31)-(2.34), after comparing the different power of \(u\), we find that \(\alpha\) and \(\beta\) are solutions for the wave equation and \(f_1, f_2, f_3, \) and \(f_4\) satisfy,

\[f_{1,t} + f_{2,r} + f_{3,\theta} + f_{4,\phi} = 0. \hspace{1cm} (2.35)\]

Now, we start by evaluating \(\xi_1, \xi_2, \xi_3, \) and \(\xi_4\) in terms of explicit functions of \(\theta\) and \(\phi\). Taking the sum of the partial derivative of Eqs. (2.13) and (2.14) with respect to \(\phi\) and \(\theta\), respectively, and using
Eq. (2.17) in (2.14) we get,

\[D \xi_1 = 0, \]

(2.36)

where the operator \(D \) is defined as follows:

\[D = \frac{\partial^2}{\partial \phi^2} - \cot \theta \frac{\partial}{\partial \phi}. \]

(2.37)

Similarly, by taking the sum of the partial derivative of Eqs. (2.15) and (2.16) with respect to \(\phi \) and \(\theta \), respectively, and using Eq. (2.17), we get

\[D \xi_2 = 0. \]

(2.38)

Applying the operator \(D \) on (2.30)-(1) and using (2.36) and (2.37), we get,

\[D \alpha = 0. \]

(2.39)

Also, applying the operator \(D \) on (2.30)-(3) and using (2.36), (2.38) and (2.39), we get,

\[D \xi_{3, \phi} = \xi_{3, \phi \theta} - \cot \theta \xi_{3, \phi \theta} = T \xi_{3, \phi} = 0, \]

(2.40)

where the operator \(T \) is defined as follows:

\[T = \frac{\partial^2}{\partial \theta^2} - \cot \theta \frac{\partial}{\partial \theta}. \]

(2.41)

Applying the operator \(T \) on (2.17) and using (2.40), we get,

\[3 \cot \theta \xi_{4, \phi} - 2 \xi_{4, \phi} + \xi_{4, \phi \theta} = 0, \]

(2.42)

Integrating Eq. (2.42) with respect to theta instantly gives,

\[\xi_4 = h_1(t, r, \phi) \csc \theta + h_2(t, r, \phi) \cot \theta + h_3(t, r, \phi). \]

(2.43)

By subtracting (2.30)-(3) from (2.30)-(4), then solving it give,

\[\xi_3 = -h_1, \phi \cos \theta - h_{3, \phi} \sin \theta \tanh^{-1}(\cos \theta) - h_{2, \phi} + h_4(t, r, \phi) \sin \theta \]

(2.44)

Substituting above values for \(\xi_3 \) and \(\xi_4 \) in Eq. (2.17) gives

\[h_1 = k_1(t, r) \sin \phi + k_2(t, r) \cos \phi, \]
\[h_2 = k_3(t, r) \sin \phi + k_4(t, r) \cos \phi, \]
\[h_3 = k_5(t, r) \phi + k_6(t, r), \]
\[h_4 = k_7(t, r). \]

(2.45)

Now, using Eqs. (2.13) and (2.15) give us \(\xi_1 \) and \(\xi_2 \) in terms of explicit functions of \(\theta \)

\[\xi_1 = e^{\mu-\nu}[\sin \theta(k_{2, t} \sin \phi - k_{1, t} \cos \phi) - k_{7, t} \cos \theta + k_{5, t} \cos \theta \tanh^{-1}(\cos \theta) + k_{4, t} \ln(\sin \theta) + \theta(k_{4, t} \sin \phi - k_{3, \phi} \cos \phi)] + h_5(t, r, \phi) \]
\[\xi_2 = -e^{\mu-\nu}[\sin \theta(k_{2, r} \sin \phi - k_{1, r} \cos \phi) - k_{7, r} \cos \theta + k_{5, r} \cos \theta \tanh^{-1}(\cos \theta) + k_{4, r} \ln(\sin \theta) + \theta(k_{4, r} \sin \phi - k_{3, r} \cos \phi)] + h_6(t, r, \phi). \]

(2.46)

Now, substituting the above values of \(\xi_1 \) and \(\xi_4 \) in Eq. (2.14) yields

\[h_5(t, r, \phi) = k_5(t, r), h_3(t, r) = w_3(r), k_4(t, r) = w_4(r), k_5(t, r) = w_5(r), k_6(t, r) = w_6(r). \]

Using values of \(\xi_2 \) and \(\xi_4 \) in Eq. (2.15) yields

\[h_6(t, r, \phi) = k_6(t, r), w_3(r) = c_3, w_4(r) = c_4, w_5(r) = c_5, w_6(r) = c_6. \]

Substituting above values of \(\xi_1 \) and \(\xi_2 \) in Eq. (2.12) yields the following conditions:

\[2k_{1, r} + (\mu_t - \lambda_t)k_{1, t} + (\mu_t - v_t)k_{1, r} = 0, \]
\[2k_{2, r} + (\mu_t - \lambda_t)k_{2, t} + (\mu_t - v_t)k_{2, r} = 0, \]
\[2k_{7, r} + (\mu_t - \lambda_t)k_{7, t} + (\mu_t - v_t)k_{7, r} = 0, \]
\[e^{\mu}k_{9, t} - e^{\mu}k_{8, r} = 0. \]

(2.47)
Now, Eq. (2.30)-(1) give \(\alpha \) in terms of explicit functions of \(\theta \) and \(\phi \) as follows:

\[
\alpha = \{ \sin \theta \cos \phi [e^{\mu-i\nu}(2k_{1,tt} - k_{1,tt}v_1 + 2\mu k_{1,r}) - e^{\mu+i\nu}k_{1,r}] \\
- \sin \theta \sin \phi [e^{\mu-i\nu}(2k_{2,rr} - v_1k_{2,rr} + 2\mu k_{2,rr}) - e^{\mu+i\nu}k_{2,rr}] \\
+ \cos \theta [e^{\mu-i\nu}(2k_{7,rr} - k_{7,rr}v_1 + 2\mu k_{7,rr}) - e^{\mu+i\nu}k_{7,rr}] - \frac{1}{2}(v_jk_s + v_jk_0 + 2k_{8,tt}).
\]

(2.48)

Equation (2.30)-(2) give us the following conditions:

\[
2e^\nu k_{1,rr} + 2e^\nu k_{1,tt} + e^\nu(2\mu_r - v_r - \lambda_r)k_{1,tt} + e^\nu(2\mu_t - v_t - \lambda_t)k_{1,rr} = 0,
2e^\nu k_{2,rr} + 2e^\nu k_{2,tt} + e^\nu(2\mu_r - v_r - \lambda_r)k_{2,tt} + e^\nu(2\mu_t - v_t - \lambda_t)k_{2,rr} = 0,
2e^\nu k_{7,rr} + 2e^\nu k_{7,tt} + e^\nu(2\mu_r - v_r - \lambda_r)k_{7,tt} + e^\nu(2\mu_t - v_t - \lambda_t)k_{7,rr} = 0,
\]

(2.49)

\[v_jk_0 - \lambda_jk_s - \lambda_rk_0 - 2k_{9,r} + v_kk_8 + 2k_{8,tt} = 0.
\]

Equation (2.30)-(3) give us that \(c_5 = 0 \) with the following conditions:

\[
2e^\nu e^\nu k_{1,rr} + e^\nu e^\nu(\mu_r - v_r - \lambda_r)k_{1,tt} = 0,
2e^\nu e^\nu k_{2,rr} + e^\nu e^\nu(\mu_r - v_r - \lambda_r)k_{2,tt} = 0,
2e^\nu e^\nu k_{7,rr} + e^\nu e^\nu(\mu_r - v_r - \lambda_r)k_{7,tt} = 0,
\]

(2.50)

\[\mu_jk_0 + \mu_jk_0 + v_jk_8 + v_jk_0 - 2k_{9,tt} = 0.
\]

Finally, since \(\alpha \) defined in Eq. (2.48) is a solution for the wave Eq. (2.5), the final solution, up to known functions of \(\theta \) and \(\phi \), becomes:

\[
\xi_1 = e^{-\mu-i\nu}[\sin \theta (k_2, \sin \phi - k_{1,t} \cos \phi) - k_{7,t} \cos \theta] + k_8,
\xi_2 = -e^{\mu-i\nu}[\sin \theta (k_2, \sin \phi - k_{1,t} \cos \phi) - k_{7,t} \cos \theta] + k_9,
\xi_3 = (k_2 \sin \phi - k_{1,t} \cos \phi) \cos \theta + k_7 \sin \theta + c_4 \sin \phi - c_3 \cos \phi,
\xi_4 = (k_1 \sin \phi + k_2 \cos \phi) \csc \theta + (c_3 \sin \phi + c_4 \cos \phi) \cot \theta + c_6.
\]

(2.51)

subject to some conditions on \(k_1, k_2, k_7, k_8, \) and \(k_9 \). At this stage the problem is reduced to finding eight functions of two variables \(r \) and \(\nu \), namely, \(k_1, k_2, k_7, k_8, k_9, v, \lambda, \) and \(\mu \) given in Eqs. (2.47), (2.49), (2.50) and Appendix A. Note that \(v \) and \(\lambda \) in the above system are arbitrary functions of temporal and radial coordinates. It is, therefore, not easy to solve the unknowns explicitly in terms of these variables for arbitrary metrics.

III. THE WAVE EQUATION ON THE FRIEDMANN ROBERTSON WALKER UNIVERSE

The Friedmann Robertson Walker universe is described by the line element \[ds^2 = dr^2 - a(t)^2\left(\frac{dr^2}{1-kr^2} + r^2d\Omega^2\right),\]

(3.1)

where \(d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2 \), \(a(t) \) is the scale factor and \(k \) is the curvature parameter with \(k = -1, 0, 1 \) corresponding to open, flat, and closed universes, respectively. Thus the wave Eq. (2.5) on this metric (with \(\nu = 0, \lambda = 2 \ln \left(\frac{a(t)}{\sqrt{1-kr^2}}\right) \)), \(\mu = \ln(r^2a(t)^2) \) takes the following form:

\[
\frac{\partial}{\partial r} (r^2a(t)^2 \sin \theta \frac{\partial \theta}{\partial r}) - \frac{\partial}{\partial r} (r^2a(t) \sin \theta \sqrt{1-kr^2} \frac{\partial \theta}{\partial r}) - \frac{\partial}{\partial \theta} \left(a(t) \sin \theta \frac{\partial \phi}{\partial \theta} \right) - \frac{\partial}{\partial \phi} \left(\frac{a(t)}{\sin \theta \sqrt{1-kr^2}} \frac{\partial \phi}{\partial \phi} \right) = 0.
\]

(3.2)

A. Flat universe

Since the value of the scale factor for the flat universe, when \(k = 0 \), is given as \(a(t) = t^{\frac{1}{2}} \), The wave equation (3.2) takes the form,

\[
\frac{\partial}{\partial r} (r^2t^2 \sin \theta \frac{\partial \theta}{\partial r}) - \frac{\partial}{\partial r} (t^2\frac{1}{2} \sin \theta \frac{\partial \theta}{\partial r}) - \frac{\partial}{\partial \theta} (\frac{1}{2} \sin \theta \frac{\partial \theta}{\partial \theta}) - \frac{\partial}{\partial \phi} (\frac{1}{2} \sin \theta \frac{\partial \phi}{\partial \phi}) = 0.
\]

(3.3)

Now by solving the system given by Eqs. (2.47)-(2.50), we will find the Noether symmetries for the above wave equation as follows:
From Eq. (2.47)(1) we get,

\[k_1 = F_1(r) + \frac{F_2(t)}{r}. \]

(3.4)

From Eqs. (2.49)(1) and (2.50)(1) we get,

\[r^2 k_{1,rr} + r k_{1,r} - k_1 = 0. \]

(3.5)

Substituting Eq. (3.4) in Eq. (3.5) gives the following Euler equation:

\[r^2 F_{1,rr} + r F_{1,r} - F_1 = 0. \]

(3.6)

Thus \(F_1 \) is given as follows:

\[F_1(r) = d_1 r + d_2 \frac{r}{r}. \]

(3.7)

Substituting Eqs. (3.4) and (3.7) in Eq. (2.50)(1) gives,

\[t^4 F_{2,tt} + \frac{2}{3} t^4 F_{2,t} + 2d_1 = 0. \]

(3.8)

Correspondingly the solution \(F_2 \) is given as follows:

\[F_2(t) = 3d_3 t^\frac{4}{3} - 9d_1 t^\frac{2}{3} + C. \]

(3.9)

Substituting Eqs. (3.7) and (3.9) in Eq. (3.4) gives us

\[k_1 = d_1 (r - 9 r^\frac{4}{3}) + d_2 \frac{r}{r} + 3d_3 \frac{r}{r}. \]

(3.10)

Similarly, we get that

\[k_2 = d_4 (r - 8 r^\frac{4}{3}) + \frac{d_4}{r} + 3d_3 r^\frac{4}{3}, \]

\[k_7 = d_5 (r - 9 r^\frac{4}{3}) + \frac{d_5}{r} + 3d_4 r^\frac{4}{3}. \]

(3.11)

Also from Eqs. (2.49)(4) and (2.50)(4) we get

\[k_9 - r k_{9,r} = 0, \]

(3.12)

giving \(k_9 \) as follows:

\[k_9 = W_1(t)r. \]

(3.13)

Substituting Eq. (3.13) in Eq. (2.47)(4) gives us

\[k_8 = \frac{r^2}{2} t^\frac{4}{3} W_{1,t} + W_2(t). \]

(3.14)

Substituting Eqs. (3.13) and (3.14) in Eq. (2.50)(4) gives the following two equations:

\[t^\frac{4}{3} W_{1,tt} + \frac{2}{3} t^{-\frac{4}{3}} W_{1,t} = 0, \]

\[t^\frac{4}{3} W_{2,tt} - \frac{2}{3} t^{-\frac{4}{3}} W_2(t) - r^\frac{4}{3} W_1(t) = 0. \]

(3.15)

So \(W_1 \) and \(W_2 \) are given as follows:

\[W_1 = d_{10} + 6d_{11} t^\frac{4}{3}, \]

\[W_2 = 3d_{10} t + 9d_{11} t^\frac{4}{3} + d_{12} t^\frac{7}{3}. \]

(3.16)

Substituting Eq. (3.16) in Eqs. (3.13) and (3.14) gives,

\[k_8 = 3d_{10} t + d_{11} (r^2 t^\frac{4}{3} + 9r^\frac{4}{3}) + d_{12} t^\frac{7}{3}, \]

\[k_9 = d_{10} r + 6d_{11} r t^\frac{4}{3}. \]

(3.17)
Finally, the solution of the system (2.47)–(2.50) for this metric is summarized as follows:

\[
\begin{align*}
 k_1 &= d_l(r - \frac{9}{r} t^3) + \frac{d_l}{r} + 3 \frac{d_l}{r} t^3, \\
 k_2 &= d_d(r - \frac{9}{r} t^3) + \frac{d_d}{r} + 3 \frac{d_d}{r} t^3, \\
 k_7 &= d_l(r - \frac{9}{r} t^3) + \frac{d_l}{r} + 3 \frac{d_l}{r} t^3, \\
 k_8 &= 3d_{10}t + d_{11}(r^2 t^3 + 9 r^3) + d_{12} t^3, \\
 k_9 &= d_{10}t^2 + 6d_{11}rt^4.
\end{align*}
\]

(3.18)

Now using constraints in Appendix A, we get the following components of the Noether symmetries:

\[
\begin{align*}
 Y_1 &= 6 r t \sin \theta \cos \phi \frac{\partial}{\partial r} + (9t^2 + r^2 \sin \theta \cos \phi \frac{\partial}{\partial \theta} + \frac{(9t^2 - r^2)}{r} \sin \theta \cos \phi \frac{\partial}{\partial \phi} - 6ru \sin \theta \cos \phi \frac{\partial}{\partial u}, \\
 Y_2 &= 6 r t \sin \theta \sin \phi \frac{\partial}{\partial r} + (9t^2 + r^2 \sin \theta \sin \phi \frac{\partial}{\partial \theta} + \frac{(9t^2 - r^2)}{r} \sin \theta \sin \phi \frac{\partial}{\partial \phi} - 6ru \sin \theta \sin \phi \frac{\partial}{\partial u}, \\
 Y_3 &= 6 r t \cos \theta \frac{\partial}{\partial r} + (9t^2 + r^2 \cos \theta \frac{\partial}{\partial \theta} + \frac{(9t^2 - r^2)}{r} \cos \theta \frac{\partial}{\partial \phi} - 6ru \cos \theta \frac{\partial}{\partial u}, \\
 Y_4 &= 3t \frac{\partial}{\partial t} + r \frac{\partial}{\partial r} - 3u \frac{\partial}{\partial u}, \\
 Y_5 &= - \sin \theta \cos \phi \frac{\partial}{\partial \theta} - \cos \theta \cos \phi \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \phi}, \\
 Y_6 &= \sin \phi \sin \theta \frac{\partial}{\partial \theta} + \cos \theta \sin \phi \frac{\partial}{\partial \phi} + \cos \phi \frac{\partial}{\partial \phi}, \\
 Y_7 &= - \cos \theta \frac{\partial}{\partial \theta} + \sin \theta \frac{\partial}{\partial \phi}, \\
 Y_8 &= - \cos \phi \frac{\partial}{\partial \theta} + \sin \phi \frac{\partial}{\partial \phi}, \\
 Y_9 &= \sin \phi \frac{\partial}{\partial \phi} + \cos \phi \frac{\partial}{\partial \phi}, \\
 Y_{10} &= \frac{\partial}{\partial \tau}, \\
 Y_\beta &= \frac{\partial}{\partial w}.
\end{align*}
\]

(3.19)

The commutation relations of the Lie algebra of the ten Noether symmetries are given in Table 1 of Appendix B.

B. Linearization of a (3 + 1) wave equation on the flat universe

In this section we transform the wave equation (3.3) on the Friedmann flat metric, from linear PDE with variable coefficients to linear PDE with constant coefficients with respect to the derivative of the dependent variable by using a specific subalgebra of the above Noether symmetries.

Defining invertible transformations

\[
 x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta, \quad \tau = -3t^4, \quad \text{and} \quad \omega = t^4u,
\]

transforms the subalgebra \(Y_4, Y_5, Y_6\) and \(Y_7\) to:

\[
\begin{align*}
 Y_4 &= r \frac{\partial}{\partial t} + x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} - w \frac{\partial}{\partial w}, \\
 Y_5 &= - \frac{\partial}{\partial x}, \\
 Y_6 &= \frac{\partial}{\partial t}, \\
 Y_7 &= - \frac{\partial}{\partial z}.
\end{align*}
\]

(3.20)

The other symmetries transform (under these transformations) to:

\[
\begin{align*}
 Y_1 &= 2x \tau \frac{\partial}{\partial \tau} + (x^2 - y^2 - z^2 - \tau^2) \frac{\partial}{\partial x} + 2xy \frac{\partial}{\partial y} + 2xz \frac{\partial}{\partial z} - 2xw \frac{\partial}{\partial w}, \\
 Y_2 &= 2y \tau \frac{\partial}{\partial \tau} + 2xy \frac{\partial}{\partial x} + (y^2 - x^2 - z^2 + \tau^2) \frac{\partial}{\partial y} + 2yz \frac{\partial}{\partial z} - 2yw \frac{\partial}{\partial w}, \\
 Y_3 &= 2z \tau \frac{\partial}{\partial \tau} + 2xz \frac{\partial}{\partial x} + 2yz \frac{\partial}{\partial y} + (z^2 - x^2 - y^2 + \tau^2) \frac{\partial}{\partial z} - 2zw \frac{\partial}{\partial w}, \\
 Y_8 &= -z \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}, \\
 Y_9 &= z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}, \\
 Y_{10} &= -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}, \\
 X_\beta &= \beta \frac{\partial}{\partial w}.
\end{align*}
\]

(3.21)
Under the coordinate transformation $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, and $z = r \cos \theta$, the wave equation (3.3) takes the form,

$$\frac{\partial}{\partial t}(t^2 u_t) = t \frac{\partial}{\partial t} \nabla^2 u. \quad (3.22)$$

If we use the transformation $w = t^{\frac{3}{2}} u$, the wave equation (3.22) becomes,

$$\frac{\partial}{\partial t}(t^{\frac{3}{2}} u_t) = t^{\frac{1}{2}}(\nabla^2 w + \frac{2}{3} t^{-\frac{1}{2}}). \quad (3.23)$$

Then by using the new variable $\tau = -3t^{\frac{1}{2}}$, the equation is transformed again to,

$$w_{\tau\tau} = \nabla^2 w + \frac{2}{3} w. \quad (3.24)$$

Now, using the method of separation of variable by taking $w = f(\tau)\psi(x, y, z)$, the above equation gives an ordinary differential equation of second order,

$$\tau^2 \frac{d^2 f(\tau)}{d\tau^2} + (\lambda^2 \tau^2 - 2) f(\tau) = 0, \quad (3.25)$$

whose general solution is,

$$f(\tau) = C_1 (\lambda \tau \cos(\lambda \tau) - \sin(\lambda \tau)) + C_2 (\cos(\lambda \tau) + \lambda \tau \sin(\lambda \tau)), \quad (3.26)$$

and the Helmholtz equation,

$$\nabla^2 v + \lambda^2 v = 0. \quad (3.27)$$

The solution of Eq. (3.24) can be constructed for some specific initial and boundary conditions.

IV. CONCLUSION

In this paper we found the Noether symmetries of a $(3 + 1)$ wave equation on the general spherical metric explicitly in terms of the explicit functions of θ and ϕ. In order to solve the Noether symmetries in terms of known functions of all the spacetime variables we chose a specific flat Friedmann metric. We get ten Noether symmetries which are three translations, three rotations, one-parameter dilation group, Y_1, Y_2, and Y_3. Finally, we have converted the wave equation with variable coefficients to the one with constant coefficients with respect to the derivative of the dependent variable by using invertible transformations. The transformed wave equation is finally converted to a second order differential equation and Helmholtz equation.

ACKNOWLEDGMENTS

Ashfaque H. Bokhari, Ahmad Y. Al-Dweik, and F. D. Zaman would like to thank King Fahd University of Petroleum and Minerals for providing support through Fast Track Research Project FT100001.

APPENDIX A: ADDITIONAL DIFFERENTIAL CONSTRAINTS SATISFIED BY NOETHER SYMMETRIES

$$2e^{\mu+\lambda} R_{1,rr} - 2e^{\mu+\lambda} R_{1,tt} + e^{\mu+\nu}(2\mu_r + \nu_r - \lambda_r) R_{1,t} - e^{\mu+\lambda}(2\mu_t - \nu_t + \lambda_t) R_{1,r} - 4e^{\mu+\lambda} R_1 = 0,$n

$$2e^{\mu+\lambda} R_{2,rr} - 2e^{\mu+\lambda} R_{2,tt} + e^{\mu+\nu}(2\mu_r + \nu_r - \lambda_r) R_{2,t} - e^{\mu+\lambda}(2\mu_t - \nu_t + \lambda_t) R_{2,r} - 4e^{\mu+\lambda} R_2 = 0,$n

$$2e^{\mu+\lambda} R_{3,rr} - 2e^{\mu+\lambda} R_{3,tt} + e^{\mu+\nu}(2\mu_r + \nu_r - \lambda_r) R_{3,t} - e^{\mu+\lambda}(2\mu_t - \nu_t + \lambda_t) R_{3,r} - 4e^{\mu+\lambda} R_3 = 0,$n

$$2e^\nu R_{4,rr} - 2e^\nu R_{4,tt} + e^{\mu+\nu}(2\mu_r + \nu_r - \lambda_r) R_{4,t} - e^{\mu}(2\mu_t - \nu_t + \lambda_t) R_{4,r} = 0.$$
where
\begin{align*}
R_1(t,r) &= e^{\mu r} (2 k_{1,t,t} - k_{1,t} v_t + 2 \mu k_{1,r}) - e^{\mu \lambda} v_t k_{1,r}, \\
R_2(t,r) &= e^{\mu r} (2 k_{2,t,t} - v_t k_{2,r} + 2 \mu k_{2,r}) - e^{\mu \lambda} v_t k_{2,r}, \\
R_3(t,r) &= e^{\mu r} (2 k_{7,t,t} - k_{7,t} v_t + 2 \mu k_{7,r}) - e^{\mu \lambda} v_t k_{7,r}, \\
R_4(t,r) &= v_t k_8 + v_t k_9 + 2 k_{8,t}.
\end{align*}

APPENDIX B: COMMUTATION RELATIONS SATISFIED BY THE NOETHER SYMMETRIES OF THE LAGRANGIAN OF THE WAVE EQ. (3.3)

TABLE I. Commutator table for the Lie algebra.

<table>
<thead>
<tr>
<th>([Y_i, Y_j])</th>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_3)</th>
<th>(Y_4)</th>
<th>(Y_5)</th>
<th>(Y_6)</th>
<th>(Y_7)</th>
<th>(Y_8)</th>
<th>(Y_9)</th>
<th>(Y_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(-Y_1)</td>
<td>2(Y_4)</td>
<td>(-2Y_{10})</td>
<td>(2Y_6)</td>
<td>(Y_3)</td>
<td>0</td>
<td>(Y_2)</td>
</tr>
<tr>
<td>(Y_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(-Y_2)</td>
<td>0</td>
<td>(-2Y_4)</td>
<td>(-2Y_{10})</td>
<td>0</td>
<td>(-Y_3)</td>
<td>(-Y_1)</td>
</tr>
<tr>
<td>(Y_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(-Y_3)</td>
<td>(-2Y_4)</td>
<td>(-2Y_{10})</td>
<td>0</td>
<td>(-Y_7)</td>
<td>0</td>
<td>(-Y_9)</td>
</tr>
<tr>
<td>(Y_4)</td>
<td>(Y_1)</td>
<td>(Y_2)</td>
<td>(Y_3)</td>
<td>0</td>
<td>(-Y_5)</td>
<td>(-Y_6)</td>
<td>(-Y_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Y_5)</td>
<td>(-2Y_4)</td>
<td>0</td>
<td>2(Y_3)</td>
<td>(Y_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(Y_7)</td>
<td>0</td>
<td>(-Y_6)</td>
</tr>
<tr>
<td>(Y_6)</td>
<td>(2Y_{10})</td>
<td>(2Y_4)</td>
<td>(2Y_3)</td>
<td>(Y_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(Y_7)</td>
<td>(Y_5)</td>
</tr>
<tr>
<td>(Y_7)</td>
<td>(-2Y_{10})</td>
<td>(2Y_4)</td>
<td>(-2Y_3)</td>
<td>(Y_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(-Y_5)</td>
<td>(-Y_6)</td>
<td>0</td>
</tr>
<tr>
<td>(Y_8)</td>
<td>(-Y_3)</td>
<td>0</td>
<td>(Y_1)</td>
<td>0</td>
<td>(-Y_7)</td>
<td>0</td>
<td>(Y_3)</td>
<td>0</td>
<td>(Y_{10})</td>
<td>(-Y_9)</td>
</tr>
<tr>
<td>(Y_9)</td>
<td>0</td>
<td>(Y_3)</td>
<td>(-Y_2)</td>
<td>0</td>
<td>0</td>
<td>(-Y_7)</td>
<td>(Y_6)</td>
<td>(-Y_{10})</td>
<td>0</td>
<td>(Y_8)</td>
</tr>
<tr>
<td>(Y_{10})</td>
<td>(-Y_2)</td>
<td>(Y_1)</td>
<td>0</td>
<td>0</td>
<td>(Y_6)</td>
<td>(-Y_5)</td>
<td>0</td>
<td>(Y_9)</td>
<td>(-Y_8)</td>
<td>0</td>
</tr>
</tbody>
</table>