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Solitary Waves for N Coupled Nonlinear Schrodinger Equations

Abstract

A hierarchy of exact analytic solitary-wave solutions for N coupled nonlinear Schrodinger equations fur which
the nonlinear coupling parameters can change continuously and cover many regions is presented. Besides
their potentially many practical applications to optical communication and multispecies Bose-Einstein
condensates for couplings outside the special integrable cases, these analytically solvable cases for special
initial conditions supplement and provide important links to and among the integrable cases.
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Solitary Waves for N Coupled Nonlinear Schrédinger Equations

F.T. Hioe

Department of Physics, St. John Fisher College, Rochester, New York 14618
(Received 25 August 1998

A hierarchy of exact analytic solitary-wave solutions fércoupled nonlinear Schrédinger equations
for which the nonlinear coupling parameters can change continuously and cover many regions
is presented. Besides their potentially many practical applications to optical communication and
multispecies Bose-Einstein condensates for couplings outside the special integrable cases, these
analytically solvable cases for special initial conditions supplement and provide important links to
and among the integrable cases. [S0031-9007(98)08318-5]

PACS numbers: 42.65.Tg, 05.45.Yv, 42.81.Dp

Nonlinearly coupled dynamical systems with two or analytic results are applicable for a wide range of nonlin-
more degrees of freedom have been subjects of consi@ar coupling parameters, and provide not only many more
erable interest for many years [1]. These systems can exisseful physical applications but also important links to
hibit many interesting features, including chaos. In rarehe integrable cases. The coupled dynamical system we
cases that involve specific interaction parameters, a nomliscuss in this Letter is closely related to the coupled non-
linearly coupled dynamical system may be found to bdinear Schrédinger (CNLS) equations which have applica-
integrable. For most interaction parameters, however, sons in many physical problems, especially in nonlinear
nonlinearly coupled system is usually not integrable. Weoptics and in the dynamics of Bose-Einstein condensates.
should note that “integrable” usually is taken to mean for When two optical waves of different frequencies co-
all initial conditions. The analytic results we present inpropagate in a medium and interact nonlinearly through
this Letter show that the coupled nonlinear system fothe medium, or when two polarization components of
which these results apply is analytically solvable for aa wave interact nonlinearly at some central frequency,
wide range of specific initial conditions, even though thethe propagation equations for the two problems can
system may not be integrable. We should also note, howbe considered together by considering the followikig
ever, that in return for restricting the initial condition the coupled nonlinear Schrédinger-like equations [2] for the

| caseN = 2:

N N
im: + Gt T Kb + (Z pmn|¢nl2>¢m + (Z qmm,%)(b;’:, =0, m=1,..,N, (1)
n=1 n=1

where ¢,,(z,t) denotes the complex amplitude of tHez and ¢ denote derivatives with respect toand ¢ as
mth electric field envelope, or thenth polarization opposed to the subscript for different components.
componentp’s, ¢'s, andx’s are parameters characteristic Equivalently, we may consider the following coupled
of the medium and interaction, and the subscripts  irequations:

N N
i + Y + (Z pmnlzﬁnlz)wm + (Z qmnw,%eQ“‘"Z>¢:,e‘“mZ =0, m=1..,N, ()
n=1 n=1

which can be transformed into (1) with the substitutioLsSchr'c)dinger equations:
U = dmexp(—ikn,z). Although the results presented N

in this Letter are for the specific case of = 2, the %, — A,,x,, + (Z bmnx;%>xm =0, m=1,...,N,
method and prescription we present are, as will be seen, n=1

extendable to a general value @ffor Egs. (1) and (2). (4)
We first search for the stationary-wave solution of theyherex denotesix/dr, and where
form ’
¢m(Z,t) = Xm(l) eXF(l.QZ), (3) Am =0 - Km! and bmn = Pmn + qmn - (5)

where ) is a real constant, and, () are real func- To eliminate the permutation symmetry, we arrange
tions of r only. Equations (1) reduce to the following, Egs. (4) such thati; = A, = --- = Ay. Since Egs. (1)
which we call the associated dynamical coupled nonlineaand (2) are invariant under a Galilean transformation,
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traveling waves can be constructed from (3) by replacinghe square of thgth Lamé function of orden in a power
dm(z, 1) by series ins = sn(u, k) as

dm(z,t — z/v)exdi[t — z/2v]/2v}, (6)

wherev is the velocity of the waves.
We can identify negative (positive) values ofy,

k = 1,2 with the normal (anomalous) group-velocity We form a(n + 1) X (2n + 1) matrixa = [a(”)] ie a
dispersion (GVD) region forg;. .The spt_ecial case of 2 X 3 matrix forn = 1 and a3 X 5 matrix f%r;1 '=.’2.
Aj = 0andby = 1forj,k = 1,2 is associated with the \ya gefiner = [c;i]to be a(n + 1) X 2 matrix, where
known integrable case of Egs. (1) first given by Manakov n Y0 ] ’ ,
[3]. Various solitary-wave solutions for this case, which it = @ip C1, ¢i2 = aig Co, i = 1,...,n + 1, whereC’s
consist of the so-called bright and dark solitary waves'€ the amplitudes in (7).B = [bij), i,j =12, is &
periodic (elliptic) waves, and waves of different forms, 2 X 2 matrix, where b’s ar the nonlinear coupling
have been presented [4]. Other valueshis for which ~ parameters in (4).D =[d;;'], i=1,....n + 1, j =

the coupled equations are integrable have been given?2 isa(n + 1) X 2 matrix, Wheredg? =A + h;,”)aZ,

[5]. The coupled equations (4) have been of interest ang™) — 4, 4,2 4 — _, 0 4 1)i2a2, 4 =0,
studied in nonlinear dynamics for many years, and they, — | > 4’s are the linear coupling parametersjin (4), and
are known to be integrable for a number of specific value%n),s are the characteristic values of the Lamé equation

of Ii‘e? 32‘::]:;[3' the space spanned by Afereal values The algebraic equations that need to be satisfied for
P P y (7) to be a solution of Egs. (4) can now be expressed

of bjx, j,k =1,...,N as theb space. Instead of asking .
whether, for some particular point of thisspace, Egs. (4) conveniently as

n+1
[fj(-n)(u)]2 = Z a,(;l)sz(i_l), j=1...,2n+1.
i=1
(8)

are integrable, the key idea behind the results presented in 'B” =D 9)
this Letter is to ask whether it is possible to postulite '
analytic solutions fOVC1, ey XN, with variable parameters, where BT denotes the transposed matrix Bf Equa_

and find regions in the> space for these solutions to tjgn (9) can be readily solved, for = 1, p,q = 1,2,3
hold so that, for these points or regions, Egs. (4) havend forn = 2, p,q = 1,...,5andp < ¢, giving 16 ana-
these analytic SOIUtionS, even though Only for the |n|t|al|yt|ca”y solvable regions in thed space, or 16 sets of
conditions given by the values of thesés and x’s at  explicit expressions ob’s in terms of the arbitrary am-
some initial timety. In this Letter, we show that there are plitudes C; and C, of the waves, for which Egs. (4) are
many regions in thé space where the values fbis can  analytically solvable. The modulusof the elliptic func-
change continuously over wide ranges and for which thgjons that express the Lamé functions, which is in the
coupled equations are analytically solvable. Specificallyrange0 < k2 < 1 unless otherwise specified, can be re-
we present a prescription for obtaining such regions angarded as another variable parameter. Treating the ampli-
present sixteen analytically solvable regions for the cas@idesC; andC, for x; andx,, the modulus, the scaling
N =2. The ansatz we use is thai(z),...,xy(t) be  parameter, and in some cases andA,, as variable pa-
expressed in terms o¥ of the 2n + 1 Lamé functions  yameters, the sixteen analytically solvable regions in the
of order n [6], with repetition allowed (i.e., the same , space for Egs. (4)N = 2, are given in (i)—(xvi) in
function for differentx’s) for n =1,....N — 1, and  Taples I-Ill, together with the analytic solutions fer
without repetition forn = N. andx,. Using transformation (6), these are the regions
Let hﬁ”), j=1,...,2n + 1, arranged in descending of »'s for which Egs. (1) or (2) have analytic coupled
order of magnitude, denote the characteristic values, ansblitary-wave solutions.
f](-”)(u) the corresponding characteristic function (Lamé These results show surprisingly many analytically solv-
function), of the Lamé equation of order, d2y/du® +  able regions for the two coupled dynamical equations (4)
[h — n(n + 1)k2sri(u, k)]y = 0. We make the ansatz that and for two coupled nonlinear Schrédinger-like equa-
tions (1) and (2). The analytically solvable regions given
xi(t) =JCi fP(at),  x(t) =CofM(ar), (7) in Tables I and Il correspond to analytic solutions given
by waves of ordem = 1, and those given in Table Il
be a solution of Egs. (4) fov = 2, wheren = 1,2, correspond to waves of order = 2, the order of the
p.gq=1,....2n+ 1, p=gqgforn=1,andp < g for Lamé equation. For the analytically solvable regions in
n = 2. Sincex;(¢) andx,(z) are assumed real, we require Table I, x; and x, have the same wave form,; must
that C; and C, be real and positive. Substitutions of the be equal tad,. The nonlinear coupling parametésss,
ansatz (7) into Eq. (4) result in algebraic equations for then the other hand, as long as they satisfy the equalities
b’s, A’s, C’s, and o and k> which can be expressed in and inequalities stated, are quite free to take up rather
a compact way in terms of three matricEs B, andD  wide ranges of values. It should be remembered, how-
which we define in the following. We start by expressingever, thatC; and C, must be non-negative (for; and
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TABLE I. Analytically solvable regions for waves of order 1 and of the same wave form;fandx,.

(i) (if) (iif)
X1 JC sn(at, k) JCen(at, k) JCidn(at, k)
X2 VG sn(at, k) VG, en(at, k) VG, dn(at, k)
A; —(1 + k?)a? (2k? — 1Da? 2 — ka?

Forby1/by = bia/byn =1,
biiCy + b1Cy

For by1/bs; = bia/by =1,
by 1Cy + b1pCy = 2k*a?
For by > by1, by > by,
Cy = 2k*a*(bn — b)A™!,
Cy = 2k*a*(by — by)A™!,
whereA = by1by, — biaby;

For by /by = byp/by = 1,
b1 Cy + b1Cy = 202

For by > by, by > bia,
Ci = 2a?(by — bp)A™!,
Cy = 2a?(byy — by)A™!,
whereA = by1by — biaba;

x, to be real), and thus at least one of ths in (i), for

of amplitudes and modulus, the same wave pair can be

example, must be negative. For the analytically solvablenade to propagate as a solitary wave pair in two optical
regions in Tables Il and Illx; andx, have different (or media of different character. Prospects for experimental
what we call complementary) wave forms and, for theseapplications of these shape-preserving “Jacobian elliptic
regions,A; need not be equal td,. While A; andA, wave trains” have been greatly enhanced following a
are free to take up any values for complementary wavegecent experimental observation [7] of the evolution of
of order 1 as shown in (iv)—(vi), they are constrained foran arbitrarily shaped input optical pulse train to the shape-
complementary waves of order 2 as shown in (vii)—(xvi).preserving Jacobian elliptic pulse train for the Maxwell-
For these analytically solvable regions, the nonlineaBloch equations. If, however, we restrict ourselves to
coupling parametersh’s can assume wide ranges of using only aperiodic waves that correspond &b =
values as indicated. Some have common boundariels then the analytically solvable regions are reduced
atk? = 1. in number and size considerably; the aperiodic solitary
It is possible that a similar approach can be used fowaves have the forms taml¢ and secla ¢ for waves of
finding analytically solvable regions for other nonlinearly order 1 (the well-known dark and bright solitary waves)
coupled equations, and that these results can be usesid have the forms sethé — % tanha ¢ seche ¢, and
as a starting point for discovering a more general waysecRa ¢ (the red, white, and blue solitary waves [4]) for
of finding analytically solvable regions and how thesewaves of order two. These aperiodic waves of orders
regions are linked to the integrable points in nonlineamgreater than 1 can be multihump solitary waves, and it
dynamical problems. As they stand now, the explicitis interesting to note a recent experimental observation
expressions (i)—(xvi) could open up new applicationsof multihump solitons in a dispersive nonlinear medium
in optical communications. We note that some wave8] and the appearance of two of the three wave forms
pairs can be in the “mixed” GVD region, i.e., one wave of order 2 in the theory of incoherent dark solitons [9].
in the normal while the other in the anomalous GVD Besides applications in optical communication, another
region, and some wave pairs can be in the normal opotentially useful application of the results presented in
anomalous GVD regions for both waves. But the newthis Letter is in the study of the dynamical stability and
feature here is that they are not always restricted focreation of solitary waves in multispecies Bose-Einstein
use in those regions because, depending on the choicendensates [10].

TABLE Il. Analytically solvable regions for complementary waves of order 1xfoand.x,.

(iv) (v) (Vi)

X1 JC sn(at, k) JC sn(at, k) JCicn(at, k)

X VG en(at, k) VG dn(at, k) VG dn(at, k)

by [A, + (1 — KD)a?]c)! KA, — (1 — K)a?]C)! —k2k7A, — a?]cy!

by, [A, + (1 + k»)ea?]cy! [A, + (1 + k»)a?]cy! KA + (1 — 2k)a?]cy!
by [A, + (1 — 2k?)a?]C! kKA, — 2 — K¥)a?]Cy! —k2k" Ay + (2 — KD)a?]cy!
by [Ay + a?]C5! [A, + K2a?]Cy ! kK'2A, — K2a?]Cy!
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TABLE lIl. Analytically solvable regions for complementary waves of order 2fpandx,. G- denoted + k% = (1 — k> + k*)'/2.

(vii) (viii)
Xy \/C_l[% G_ — k*sn*(at, k)] \/a[% G_ — k*sn*(at, k)]
X2 JCysn(at, k)en(at, k) VG sn(at, k)dn(at, k)
by 9G7?[A; + 2G.e?]C|! 9G*[A, + 2G.a*]C]!
by, 6k*G_'[A; + (2G;+ — G-)a?]Cy! 6k*°G_'[A; + (2G. — G-)a?]C,!
by 9G7MA, + (4 + KH)ea?]C]! 9G=[A;, + (1 + 4k*)a?]C)!
by 6K*GZ'[A; + (4 + K — G_)a?]C;! 6k°G-'[A; + (1 + 4k* — G-)a?]Cy!
A 2a202G.G- — 3K2G, — 1)/(3k* — 2G_) 2a[G-(2G, — G_) — 3G.]/(3 — 2G_)
Ay a?[2(4 + KOG — 3K2(4 + k?) — 2]/(Bk? — 2G_) @[2G_(1 + 4k* — G_) — 3(1 + 4k»)]/(3 — 2G-)
(%) )
X1 JC[2G- — Krsn*(at,k)] JCi[3 G- — K2sn*(at, k)]
X2  JC,en(at, k)dn(at, k) \/@[% G, — k*sn*(at, k)]
by —9GT'ATH(1 + KA, + 2[G.(1 + k*) — 3k*]a?}C! —9G-'AY(A; + Gra?)C)!
b 6K2A"YA, + (2G, — G )a?}C;! 9G'A YA, + 2G, — G )a?Cy!
by —9GT'ATH(1 + KA, + (1 — 4k* + kHa?C! —9G-'A"YA;, + 2G- — G1)a*C!
by 6kPATHA, + (1 + k* — G-)a?C, !, 9G'A(A; + G_a?)C, !,
whereA = 6k> — G_(1 + k?) whereA = G, — G-

A 20HG-(2G, — G-) — 3[G+(1 + k?) — 3K*T/[3(1 + k*) — 2G-] @*(2G,G- — G* — G*)A™!
Ay @2G_(1 + k* — G2) — 3(1 — 4k* + kHY/[3(1 + k2) —2G_]  a*(—2G.G_ + G2 + G*)A™!

(i) (xii)
x1 JCisn(at, k)en(at, k) JC sn(at, k)en(at, k)
X2 JCysn(at,k)dn(at, k) JGC; cen(at, k)dn(at, k)
by 62kl 2Cy! {1+ kDA, + @ — K + KMe?e)!
by, —6ak*k'2C5! {A + (4 + B)a?Cy!
by 6a?k*k'2CT! {(1 + KHA, + (1 — 4K> + kHa?}C)!
by —6a2k*k'"2Cy! {A; + (1 + KD)a?}C; !
A —4 + K)a? (5k* — 4)a?
Ay —(1 + 4k*)a? (5k* — Da?
(xii) (xiv)
x1 JCisn(at, k)en(at, k) JC sn(at, k)dn(at, k)
X2 JC LGy — Krsn*(at,k)] JC; en(at, k)dn(at, k)
b 6k°GIHA, + 4 + k2 — G.)a*Cy! {1+ A, + (1 — k* + 4k e?C)!
bi 9G A, + (4 + K)a?Cy! {A; + (1 + 4k>)a?Cs!
by 6k*G; YA, + 2G- — Gi)a}C[! {1+ A, + (1 — 4k + KYasC)!
by 9G A, + 2G_a?C;! {4, + (1 + BH)alCy!
A B4 + K?) — 2G4 + k2 — G )}/ (2G+ — 3k?) (5 — 4k?)a?
Ay aH6k*G- — 2G.(2G- — G4)}/(2G, — 3k?) (5 — ka?
(xv) (xvi)
x1 JCisn(at, k)dn(at, k) JCi cn(at, k)dn(at, k)
X2 JC LGy — Krsn*(at,k)] JCi[3 Gy — K2sn*(at, k)]
by 6k*G YA, + (1 + 4k* — G1)a?}C,! —6G. k*A"HA, + (1 + k2 — G4)a?Cy!
bi 9GHA, + (1 + 4k*)a}C5! 9ATH(1 + K2)A; + (1 — 4k* + kHa?Cy!
by 6k*G;YA; + (2G- — G.)a*Cy! —6Gk2A™H{A, + 2G- — G1)a?ICT!
by 9G XA, + 2G_a*Cy! 9AH( + K*)A, + [2G-(1 + k?) — 6k*]a®}Cy Y,
whereA = (1 + k*)G? — 6G.k*
A a?{3(1 + 4k?) — 2G.(1 + 4k*> — G1)}/(2Gy — 3) a?2G, (1 + k2 — G4) — 3(1 — 4k* + kY}/[3(1 + k?) — 2G4 ]
Ay a*{6G- — 2G.(2G- — G.)}/(2G, — 3) @¥2G,(2G- — G;) — 6[G_(1 + k?) — 3k2TH/[3(1 + k) — 2G,]
[1] See, e.g., J. Hietarinta, Phys. Repl7, 87 (1987); A. V. A. Erdelyi etal. (McGraw-Hill, New York, 1955),
Mikhailov et al., Russ. Math. Surveyd?2, 1 (1987), and Vol. 3, Chap. XV.
references therein. [7] J.L. Shultz and G.J. Salamo, Phys. Rev. L&, 855
[2] See, e.g., G.P. AgrawalNonlinear Fiber Optics(Aca- (1997).
demic Press, New York, 1995), and references therein.  [8] M. Mitchell et al., Phys. Rev. Lett80, 4657 (1998).
[3] S.V. Manakov, Sov. Phys. JETS8, 248 (1974). [9] D.N. Christodoulides and T.H. Coskun, Phys. Rev. Lett.
[4] See, e.g., F.T. Hioe, Phys. Rev.3B, 6700 (1998), and 80, 5113 (1998).
references therein. [10] C.K. Law et al., Phys. Rev. Lett.79, 3105 (1997);
[5] Y. Kajinagaet al.,J. Phys. Soc. Jpa7, 1565 (1998). R. Dumet al., ibid. 80, 2972 (1998).

[6] See, e.g.,Higher Transcendental Functiongdited by
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