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Solitary Waves for N Coupled Nonlinear Schrodinger Equations

Abstract
A hierarchy of exact analytic solitary-wave solutions for N coupled nonlinear Schrodinger equations fur which
the nonlinear coupling parameters can change continuously and cover many regions is presented. Besides
their potentially many practical applications to optical communication and multispecies Bose-Einstein
condensates for couplings outside the special integrable cases, these analytically solvable cases for special
initial conditions supplement and provide important links to and among the integrable cases.
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Solitary Waves for N Coupled Nonlinear Schrödinger Equations

F. T. Hioe
Department of Physics, St. John Fisher College, Rochester, New York 14618

(Received 25 August 1998)

A hierarchy of exact analytic solitary-wave solutions forN coupled nonlinear Schrödinger equations
for which the nonlinear coupling parameters can change continuously and cover many regions
is presented. Besides their potentially many practical applications to optical communication and
multispecies Bose-Einstein condensates for couplings outside the special integrable cases, these
analytically solvable cases for special initial conditions supplement and provide important links to
and among the integrable cases. [S0031-9007(98)08318-5]

PACS numbers: 42.65.Tg, 05.45.Yv, 42.81.Dp

Nonlinearly coupled dynamical systems with two or
more degrees of freedom have been subjects of consid-
erable interest for many years [1]. These systems can ex-
hibit many interesting features, including chaos. In rare
cases that involve specific interaction parameters, a non-
linearly coupled dynamical system may be found to be
integrable. For most interaction parameters, however, a
nonlinearly coupled system is usually not integrable. We
should note that “integrable” usually is taken to mean for
all initial conditions. The analytic results we present in
this Letter show that the coupled nonlinear system for
which these results apply is analytically solvable for a
wide range of specific initial conditions, even though the
system may not be integrable. We should also note, how-
ever, that in return for restricting the initial condition the

analytic results are applicable for a wide range of nonlin-
ear coupling parameters, and provide not only many more
useful physical applications but also important links to
the integrable cases. The coupled dynamical system we
discuss in this Letter is closely related to the coupled non-
linear Schrödinger (CNLS) equations which have applica-
tions in many physical problems, especially in nonlinear
optics and in the dynamics of Bose-Einstein condensates.

When two optical waves of different frequencies co-
propagate in a medium and interact nonlinearly through
the medium, or when two polarization components of
a wave interact nonlinearly at some central frequency,
the propagation equations for the two problems can
be considered together by considering the followingN
coupled nonlinear Schrödinger-like equations [2] for the
caseN ­ 2:

ifmz 1 fmtt 1 kmfm 1

√
NX

n­1

pmnjfnj2

!
fm 1

√
NX

n­1

qmnf2
n

!
fp

m ­ 0, m ­ 1, . . . , N , (1)

where fmsz, td denotes the complex amplitude of the
mth electric field envelope, or themth polarization
component,p’s, q’s, andk’s are parameters characteristic
of the medium and interaction, and the subscripts in

z and t denote derivatives with respect toz and t as
opposed to the subscriptm for different components.
Equivalently, we may consider the following coupled
equations:

icmz 1 cmtt 1

√
NX

n­1

pmnjcnj2

!
cm 1

√
NX

n­1

qmnc2
ne2iknz

!
cp

me22ikmz ­ 0, m ­ 1, . . . , N , (2)

which can be transformed into (1) with the substitutions
cm ­ fm exps2ikmzd. Although the results presented
in this Letter are for the specific case ofN ­ 2, the
method and prescription we present are, as will be seen,
extendable to a general value ofN for Eqs. (1) and (2).

We first search for the stationary-wave solution of the
form

fmsz, td ­ xmstd expsiVzd , (3)

where V is a real constant, andxmstd are real func-
tions of t only. Equations (1) reduce to the following,
which we call the associated dynamical coupled nonlinear

Schrödinger equations:

ẍm 2 Amxm 1

√
NX

n­1

bmnx2
n

!
xm ­ 0, m ­ 1, . . . , N ,

(4)

where Ùx denotesdxydt, and where

Am ­ V 2 km0 and bmn ­ pmn 1 qmn . (5)

To eliminate the permutation symmetry, we arrange
Eqs. (4) such thatA1 # A2 # · · · # AN . Since Eqs. (1)
and (2) are invariant under a Galilean transformation,
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traveling waves can be constructed from (3) by replacing
fmsz, td by

fmsz, t 2 zyyd exphift 2 zy2ygy2yj , (6)

wherey is the velocity of the waves.
We can identify negative (positive) values ofbjk ,

k ­ 1, 2 with the normal (anomalous) group-velocity
dispersion (GVD) region forfj. The special case of
Aj ­ 0 andbjk ­ 1 for j, k ­ 1, 2 is associated with the
known integrable case of Eqs. (1) first given by Manakov
[3]. Various solitary-wave solutions for this case, which
consist of the so-called bright and dark solitary waves,
periodic (elliptic) waves, and waves of different forms,
have been presented [4]. Other values ofb’s for which
the coupled equations are integrable have been given
[5]. The coupled equations (4) have been of interest and
studied in nonlinear dynamics for many years, and they
are known to be integrable for a number of specific values
of A’s andb’s [1].

Let us refer to the space spanned by theN2 real values
of bjk , j, k ­ 1, . . . , N as theb space. Instead of asking
whether, for some particular point of thisb space, Eqs. (4)
are integrable, the key idea behind the results presented in
this Letter is to ask whether it is possible to postulateN
analytic solutions forx1, . . . , xN , with variable parameters,
and find regions in theb space for these solutions to
hold so that, for these points or regions, Eqs. (4) have
these analytic solutions, even though only for the initial
conditions given by the values of thesex’s and Ùx’s at
some initial timet0. In this Letter, we show that there are
many regions in theb space where the values forb’s can
change continuously over wide ranges and for which the
coupled equations are analytically solvable. Specifically,
we present a prescription for obtaining such regions and
present sixteen analytically solvable regions for the case
N ­ 2. The ansatz we use is thatx1std, . . . , xN std be
expressed in terms ofN of the 2n 1 1 Lamé functions
of order n [6], with repetition allowed (i.e., the same
function for different x’s) for n ­ 1, . . . , N 2 1, and
without repetition forn ­ N .

Let h
snd
j , j ­ 1, . . . , 2n 1 1, arranged in descending

order of magnitude, denote the characteristic values, and
f

snd
j sud the corresponding characteristic function (Lamé

function), of the Lamé equation of ordern, d2yydu2 1

fh 2 nsn 1 1dk2sn2su, kdgy ­ 0. We make the ansatz that

x1std ­
p

C1 f snd
p satd, x2std ­

p
C2 f snd

q satd , (7)

be a solution of Eqs. (4) forN ­ 2, where n ­ 1, 2,
p, q ­ 1, . . . , 2n 1 1, p # q for n ­ 1, andp , q for
n ­ 2. Sincex1std andx2std are assumed real, we require
that C1 andC2 be real and positive. Substitutions of the
ansatz (7) into Eq. (4) result in algebraic equations for the
b’s, A’s, C’s, and a and k2 which can be expressed in
a compact way in terms of three matricesG, B, and D
which we define in the following. We start by expressing

the square of thejth Lamé function of ordern in a power
series ins ­ snsu, kd as

f f
snd
j sudg2 ­

n11X
i­1

a
snd
ij s2si21d, j ­ 1, . . . , 2n 1 1 .

(8)

We form asn 1 1d 3 s2n 1 1d matrix a ­ fasnd
ij g, i.e., a

2 3 3 matrix for n ­ 1 and a3 3 5 matrix for n ­ 2.
We defineG ­ fcijg to be asn 1 1d 3 2 matrix, where

ci1 ­ a
snd
ip C1, ci2 ­ a

snd
iq C2, i ­ 1, . . . , n 1 1, whereC’s

are the amplitudes in (7).B ­ fbijg, i, j ­ 1, 2, is a
2 3 2 matrix, where b’s are the nonlinear coupling
parameters in (4). D ­ fdsnd

ij g, i ­ 1, . . . , n 1 1, j ­

1, 2, is asn 1 1d 3 2 matrix, whered
snd
11 ­ A1 1 h

snd
p a2,

d
snd
12 ­ A2 1 h

snd
q a2, d

snd
2j ­ 2nsn 1 1dk2a2, d

snd
3j ­ 0,

j ­ 1, 2, A’s are the linear coupling parameters in (4), and
h

snd
j ’s are the characteristic values of the Lamé equation.

The algebraic equations that need to be satisfied for
(7) to be a solution of Eqs. (4) can now be expressed
conveniently as

GBT ­ D , (9)

where BT denotes the transposed matrix ofB. Equa-
tion (9) can be readily solved, forn ­ 1, p, q ­ 1, 2, 3
and forn ­ 2, p, q ­ 1, . . . , 5 andp , q, giving 16 ana-
lytically solvable regions in theb space, or 16 sets of
explicit expressions ofb’s in terms of the arbitrary am-
plitudesC1 and C2 of the waves, for which Eqs. (4) are
analytically solvable. The modulusk of the elliptic func-
tions that express the Lamé functions, which is in the
range0 , k2 # 1 unless otherwise specified, can be re-
garded as another variable parameter. Treating the ampli-
tudesC1 andC2 for x1 andx2, the modulusk, the scaling
parametera, and in some casesA1 andA2, as variable pa-
rameters, the sixteen analytically solvable regions in the
b space for Eqs. (4),N ­ 2, are given in (i)–(xvi) in
Tables I–III, together with the analytic solutions forx1
and x2. Using transformation (6), these are the regions
of b’s for which Eqs. (1) or (2) have analytic coupled
solitary-wave solutions.

These results show surprisingly many analytically solv-
able regions for the two coupled dynamical equations (4)
and for two coupled nonlinear Schrödinger-like equa-
tions (1) and (2). The analytically solvable regions given
in Tables I and II correspond to analytic solutions given
by waves of ordern ­ 1, and those given in Table III
correspond to waves of ordern ­ 2, the order of the
Lamé equation. For the analytically solvable regions in
Table I, x1 and x2 have the same wave form,A1 must
be equal toA2. The nonlinear coupling parametersb’s,
on the other hand, as long as they satisfy the equalities
and inequalities stated, are quite free to take up rather
wide ranges of values. It should be remembered, how-
ever, thatC1 and C2 must be non-negative (forx1 and
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TABLE I. Analytically solvable regions for waves of order 1 and of the same wave form forx1 andx2.

(i) (ii) (iii)

x1
p

C1 snsat, kd
p

C1 cnsat, kd
p

C1 dnsat, kd
x2

p
C2 snsat, kd

p
C2 cnsat, kd

p
C2 dnsat, kd

Aj 2s1 1 k2da2 s2k2 2 1da2 s2 2 k2da2

For b11yb21 ­ b12yb22 ­ 1, For b11yb21 ­ b12yb22 ­ 1, For b11yb21 ­ b12yb22 ­ 1,

b11C1 1 b12C2 ­ 22k2a2 b11C1 1 b12C2 ­ 2k2a2 b11C1 1 b12C2 ­ 2a2

For b11 . b21, b22 . b12, For b11 . b21, b22 . b12,

C1 ­ 2k2a2sb22 2 b12dD21, C1 ­ 2a2sb22 2 b12dD21,

C2 ­ 2k2a2sb11 2 b21dD21, C2 ­ 2a2sb11 2 b21dD21,

whereD ­ b11b22 2 b12b21 whereD ­ b11b22 2 b12b21

x2 to be real), and thus at least one of theb’s in (i), for
example, must be negative. For the analytically solvable
regions in Tables II and III,x1 and x2 have different (or
what we call complementary) wave forms and, for these
regions,A1 need not be equal toA2. While A1 and A2
are free to take up any values for complementary waves
of order 1 as shown in (iv)–(vi), they are constrained for
complementary waves of order 2 as shown in (vii)–(xvi).
For these analytically solvable regions, the nonlinear
coupling parametersb’s can assume wide ranges of
values as indicated. Some have common boundaries
at k2 ­ 1.

It is possible that a similar approach can be used for
finding analytically solvable regions for other nonlinearly
coupled equations, and that these results can be used
as a starting point for discovering a more general way
of finding analytically solvable regions and how these
regions are linked to the integrable points in nonlinear
dynamical problems. As they stand now, the explicit
expressions (i)–(xvi) could open up new applications
in optical communications. We note that some wave
pairs can be in the “mixed” GVD region, i.e., one wave
in the normal while the other in the anomalous GVD
region, and some wave pairs can be in the normal or
anomalous GVD regions for both waves. But the new
feature here is that they are not always restricted for
use in those regions because, depending on the choice

of amplitudes and modulus, the same wave pair can be
made to propagate as a solitary wave pair in two optical
media of different character. Prospects for experimental
applications of these shape-preserving “Jacobian elliptic
wave trains” have been greatly enhanced following a
recent experimental observation [7] of the evolution of
an arbitrarily shaped input optical pulse train to the shape-
preserving Jacobian elliptic pulse train for the Maxwell-
Bloch equations. If, however, we restrict ourselves to
using only aperiodic waves that correspond tok2 ­
1, then the analytically solvable regions are reduced
in number and size considerably; the aperiodic solitary
waves have the forms tanhaj and sechaj for waves of
order 1 (the well-known dark and bright solitary waves)
and have the forms sech2aj 2

2
3 , tanhaj sechaj, and

sech2aj (the red, white, and blue solitary waves [4]) for
waves of order two. These aperiodic waves of orders
greater than 1 can be multihump solitary waves, and it
is interesting to note a recent experimental observation
of multihump solitons in a dispersive nonlinear medium
[8] and the appearance of two of the three wave forms
of order 2 in the theory of incoherent dark solitons [9].
Besides applications in optical communication, another
potentially useful application of the results presented in
this Letter is in the study of the dynamical stability and
creation of solitary waves in multispecies Bose-Einstein
condensates [10].

TABLE II. Analytically solvable regions for complementary waves of order 1 forx1 andx2.

(iv) (v) (vi)

x1
p

C1 snsat, kd
p

C1 snsat, kd
p

C1 cnsat, kd
x2

p
C2 cnsat, kd

p
C2 dnsat, kd

p
C2 dnsat, kd

b11 fA1 1 s1 2 k2da2gC21
1 k2fA1 2 s1 2 k2da2gC21

1 2k2k022fA1 2 a2gC21
1

b12 fA1 1 s1 1 k2da2gC21
2 fA1 1 s1 1 k2da2gC21

2 k022fA1 1 s1 2 2k2da2gC21
2

b21 fA2 1 s1 2 2k2da2gC21
1 k2fA2 2 s2 2 k2da2gC21

1 2k2k022fA2 1 s2 2 k2da2gC21
1

b22 fA2 1 a2gC21
2 fA2 1 k2a2gC21

2 k022fA2 2 k2a2gC21
2
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TABLE III. Analytically solvable regions for complementary waves of order 2 forx1 andx2. G6 denotes1 1 k2 6 s1 2 k2 1 k4d1y2.

(vii) (viii)

x1
p

C1 f 1
3 G2 2 k2sn2sat, kdg

p
C1 f 1

3 G2 2 k2sn2sat, kdg
x2

p
C2 snsat, kdcnsat, kd

p
C2 snsat, kddnsat, kd

b11 9G22
2 fA1 1 2G1a2gC21

1 9G22
2 fA1 1 2G1a2gC21

1

b12 6k2G21
2 fA1 1 s2G1 2 G2da2gC21

2 6k2G21
2 fA1 1 s2G1 2 G2da2gC21

2

b21 9G22
2 fA2 1 s4 1 k2da2gC21

1 9G22
2 fA2 1 s1 1 4k2da2gC21

1

b22 6k2G21
2 fA2 1 s4 1 k2 2 G2da2gC21

2 6k2G21
2 fA2 1 s1 1 4k2 2 G2da2gC21

2

A1 2a2s2G1G2 2 3k2G1 2 1dys3k2 2 2G2d 2a2fG2s2G1 2 G2d 2 3G1gys3 2 2G2d
A2 a2f2s4 1 k2dG2 2 3k2s4 1 k2d 2 2gys3k2 2 2G2d a2f2G2s1 1 4k2 2 G2d 2 3s1 1 4k2dgys3 2 2G2d

(ix) (x)

x1
p

C1 f 1
3 G2 2 k2sn2sat, kdg

p
C1 f 1

3 G2 2 k2sn2sat, kdg
x2

p
C2 cnsat, kddnsat, kd

p
C2 f 1

3 G1 2 k2sn2sat, kdg
b11 29G21

2 D21hs1 1 k2dA1 1 2fG1s1 1 k2d 2 3k2ga2jC21
1 29G21

2 D21sA1 1 G1a2dC21
1

b12 6k2D21hA1 1 s2G1 2 G2da2jC21
2 9G21

1 D21hA1 1 s2G1 2 G2da2jC21
2

b21 29G21
2 D21hs1 1 k2dA2 1 s1 2 4k2 1 k4da2jC21

1 29G21
2 D21hA2 1 s2G2 2 G1da2jC21

1

b22 6k2D21hA2 1 s1 1 k2 2 G2da2jC21
2 , 9G21

1 D21sA2 1 G2a2dC21
2 ,

whereD ­ 6k2 2 G2s1 1 k2d whereD ­ G1 2 G2

A1 2a2hG2s2G1 2 G2d 2 3fG1s1 1 k2d 2 3k2gjyf3s1 1 k2d 2 2G2g a2s2G1G2 2 G2
1 2 G2

2dD21

A2 a2h2G2s1 1 k2 2 G2d 2 3s1 2 4k2 1 k4djyf3s1 1 k2d 2 2G2g a2s22G1G2 1 G2
1 1 G2

2dD21

(xi) (xii)

x1
p

C1 snsat, kdcnsat, kd
p

C1 snsat, kdcnsat, kd
x2

p
C2 snsat, kddnsat, kd

p
C2 cnsat, kddnsat, kd

b11 6a2k4k022C21
1 hs1 1 k2dA1 1 s4 2 k2 1 k4da2jC21

1

b12 26a2k2k022C21
2 hA1 1 s4 1 k2da2jC21

2

b21 6a2k4k022C21
1 hs1 1 k2dA2 1 s1 2 4k2 1 k4da2jC21

1

b22 26a2k2k022C21
2 hA2 1 s1 1 k2da2jC21

2

A1 2s4 1 k2da2 s5k2 2 4da2

A2 2s1 1 4k2da2 s5k2 2 1da2

(xiii) (xiv)

x1
p

C1 snsat, kdcnsat, kd
p

C1 snsat, kddnsat, kd
x2

p
C2 f 1

3 G1 2 k2sn2sat, kdg
p

C2 cnsat, kddnsat, kd
b11 6k2G21

1 hA1 1 s4 1 k2 2 G1da2jC21
1 hs1 1 k2dA1 1 s1 2 k2 1 4k4da2jC21

1

b12 9G22
1 hA1 1 s4 1 k2da2jC21

2 hA1 1 s1 1 4k2da2jC21
2

b21 6k2G21
1 hA2 1 s2G2 2 G1da2jC21

1 hs1 1 k2dA2 1 s1 2 4k2 1 k4da2jC21
1

b22 9G22
1 hA2 1 2G2a2jC21

2 hA2 1 s1 1 k2da2jC21
2

A1 a2h3k2s4 1 k2d 2 2G1s4 1 k2 2 G1djys2G1 2 3k2d s5 2 4k2da2

A2 a2h6k2G2 2 2G1s2G2 2 G1djys2G1 2 3k2d s5 2 k2da2

(xv) (xvi)

x1
p

C1 snsat, kddnsat, kd
p

C1 cnsat, kddnsat, kd
x2

p
C2 f 1

3 G1 2 k2sn2sat, kdg
p

C2 f 1
3 G1 2 k2sn2sat, kdg

b11 6k2G21
1 hA1 1 s1 1 4k2 2 G1da2jC21

1 26G1k2D21hA1 1 s1 1 k2 2 G1da2jC21
1

b12 9G22
1 hA1 1 s1 1 4k2da2jC21

2 9D21hs1 1 k2dA1 1 s1 2 4k2 1 k4da2jC21
2

b21 6k2G21
1 hA2 1 s2G2 2 G1da2jC21

1 26G1k2D21hA2 1 s2G2 2 G1da2jC21
1

b22 9G22
1 hA2 1 2G2a2jC21

2 9D21hs1 1 k2dA2 1 f2G2s1 1 k2d 2 6k2ga2jC21
2 ,

whereD ­ s1 1 k2dG2
1 2 6G1k2

A1 a2h3s1 1 4k2d 2 2G1s1 1 4k2 2 G1djys2G1 2 3d a2h2G1s1 1 k2 2 G1d 2 3s1 2 4k2 1 k4djyf3s1 1 k2d 2 2G1g
A2 a2h6G2 2 2G1s2G2 2 G1djys2G1 2 3d a2h2G1s2G2 2 G1d 2 6fG2s1 1 k2d 2 3k2gjyf3s1 1 k2d 2 2G1g
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