Document Type

Article

Publication Date

1-2007

Abstract

Estrogen plays an essential role in the growth and maturation of the mammalian oocyte, and recent studies suggest that it also influences follicle formation in the neonatal ovary. In the course of studies designed to assess the effect of the estrogenic chemical bisphenol A (BPA) on mammalian oogenesis, we uncovered an estrogenic effect at an even earlier stage of oocyte development—at the onset of meiosis in the fetal ovary. Pregnant mice were treated with low, environmentally relevant doses of BPA during mid-gestation to assess the effect of BPA on the developing ovary. Oocytes from exposed female fetuses displayed gross aberrations in meiotic prophase, including synaptic defects and increased levels of recombination. In the mature female, these aberrations were translated into an increase in aneuploid eggs and embryos. Surprisingly, we observed the same constellation of meiotic defects in fetal ovaries of mice homozygous for a targeted disruption of ERb, one of the two known estrogen receptors. This, coupled with the finding that BPA exposure elicited no additional effects in ERb null females, suggests that BPA exerts its effect on the early oocyte by interfering with the actions of ERb. Together, our results show that BPA can influence early meiotic events and, importantly, indicate that the oocyte itself may be directly responsive to estrogen during early oogenesis. This raises concern that brief exposures during fetal development to substances that mimic or antagonize the effects of estrogen may adversely influence oocyte development in the exposed female fetus.

DOI

10.1371/journal.pgen.0030005

Comments

©2007, the authors. Original publication is available at http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0030005

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Additional Files

Included in

Biology Commons

Share

COinS